Advertisement

Discovery of a Novel Gene Conferring Tellurite Tolerance Through Tellurite Reduction to Escherichia coli Transformant in Marine Sediment Metagenomic Library

  • Madison Pascual Munar
  • Hirokazu Takahashi
  • Yoshiko Okamura
Original Article

Abstract

Metagenomic library construction using a marine sediment-enrichment was employed in order to recover tellurium from tellurite, a tellurium oxyanion, dissolved in water and then functional screening was performed to discover a novel gene related to tellurite reduction. Transmission electron microscopy (TEM) revealed the formation of intracellular Te crystals in Escherichia coli cells transformed with a specific DNA fragment from the marine sediment metagenome. The metagenome fragment was composed of 691 bp and showed low homology to known proteins. Phylogenetic analysis suggested that the metagenome fragment was related to Pseudomonas stutzeri. Cloning and expression of an open reading frame (ORF) on the metagenome fragment validated the role of the fragment in conferring tellurite resistance and tellurite-reducing activity to E. coli host cells. E. coli transformant containing the ORF1 showed resistance to 1 mM Na2TeO3. The optimal tellurite-reducing activity of cells containing the ORF1 was recorded at 37 °C and pH 7.0.

Keywords

Metagenome library Marine sediment Metalloid tellurium Tellurite reduction 

Notes

Acknowledgments

The marine sediment sample was generously provided by Dr. Takeshi Terahara of the Tokyo University of Marine Science and Technology, Japan.

Funding Information

This work was supported by the research budgets of Hiroshima University. Madison Munar received financial support for his Ph.D. from the Top Global University Project Scholarship of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2019_9922_MOESM1_ESM.pptx (40 kb)
Supplementary Figure 1 (PPTX 39 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Arenas-Salinas M, Perez JI, Morales W, Pinto C, Diaz P, Cornejo FA et al (2016) Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures. Front Microbiol 7:1–14CrossRefGoogle Scholar
  3. Avazeri C, Turner R, Pommier J, Weiner J, Giordano G, Vermeglio A (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189PubMedCrossRefGoogle Scholar
  4. Berlemont R, Jacquin O, Delsaute M, La Salla M, Georis J et al (2013) Novel cold-adapted esterase MHIip from an Antarctic soil metagenome. Biology 2:177–188PubMedPubMedCentralCrossRefGoogle Scholar
  5. Borghese R, Baccolini C, Francia F, Sabatino P, Turner RJ, Zannoni D (2014) Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus. J Hazard Mater 269:24–30PubMedCrossRefGoogle Scholar
  6. Burgess JG, Miyashita H, Sudo H, Matsunaga T (1991) Antibiotic production by the marine photosynthetic bacterium Chromatium purpuratum NKPB 031704: localization of activity to the chromatophores. FEMS Microbial Lett 84:301–306CrossRefGoogle Scholar
  7. Calderón IL, Arenas FA, Pérez JM, Fuentes DE, Araya MA, Saavedra CP et al (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1(1):70CrossRefGoogle Scholar
  8. Castro ME, Molina R, Díaz W, Pichuantes SE, Vásquez CC (2008) The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity. Biochem Biophys Res Commun 375:91–94PubMedCrossRefGoogle Scholar
  9. Chasteen TG, Fuentes DE, Tantalean JC, Vasquez CC (2009) Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832PubMedCrossRefGoogle Scholar
  10. Coker VS, Byrne JM, Telling ND, van der Laan G, Lloyd JR, Hitchcock AP et al (2012) Characterization of the dissimilatory reduction of Fe (III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD. Geobiology 10(4):347–354PubMedCrossRefGoogle Scholar
  11. Edwards JL, Smith DL, Connolly J, McDonald JE et al (2010) Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes 1:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  12. Fan J, Jiang D, Zhao YL, Zhang XC (2014) Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B. Proc Natl Acad Sci U S A 111(21):7636–7640PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fujita M, Sakai R (2014) Production of Avaroferrin and Putrebactin by heterologous expression of a deep-sea metagenomic DNA. Mar Drugs 12:4799–4809PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788PubMedPubMedCentralCrossRefGoogle Scholar
  15. Ghachi ME, Howe N, Auger R, Lambion A, Guiseppi A, Delbrassine F, Manat G, Roure S, Peslier S, Sauvage E, Vogeley L, Rengifo-Gonzalez JC, Charlier P, Mengin-Lecreulx D, Foglino M, Touzé T, Caffrey M, Kerff F (2017) Crystal structure and biochemical characterization of the transmembrane PAP2 type phosphatidylglycerol phosphate phosphatase from Bacillus subtilis. Cell Mol Life Sci 74(12):2319–2332PubMedCrossRefGoogle Scholar
  16. Hill SM, Jobling MG, Lloyd BH, Strike P, Ritchie DA (1993) Functional expression of the tellurite resistance determinant from the IncHI-2 plasmid pMER610. Mol Gen Genet 241:203–212PubMedCrossRefGoogle Scholar
  17. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:1–18CrossRefGoogle Scholar
  18. Jiang CJ, Hao ZY, Zeng R, Shen PH, Li JF, Wu B (2011) Characterization of novel serine protease inhibitor gene from a marine metagenome. Mar Drugs 9:1487–1501PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jobling MG, Ritchie DA (1987) Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet 208:288–293PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jobling MG, Ritchie DA (1988) The nucleotide sequence of a plasmid determinant for resistance to tellurium anions. Gene 66:245–258PubMedCrossRefGoogle Scholar
  21. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  22. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20PubMedCrossRefGoogle Scholar
  23. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29(4):279–306PubMedCrossRefGoogle Scholar
  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  25. Liu FL, Yang XL (2017) Indole derivatives produced by the metagenome genes of the Escherichia coli-harboring marine sponge Discodermia calyx. Molecules 22:68–689CrossRefGoogle Scholar
  26. Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290PubMedCrossRefGoogle Scholar
  27. Mai Z, Su H, Zhang S (2016) Characterization of a metagenome-derived β-glucosidase and its application in conversion of polydatin to resveratrol. Catalyst 6:35–47CrossRefGoogle Scholar
  28. Maltman C, Donald LJ, Yurkov V (2017) Tellurite and Tellurate reduction by the aerobic anoxygenic phototroph Erythromonas ursincola strain KR99 is carried out by a novel membrane associated enzyme. Microorganisms 5(2):20PubMedCentralCrossRefPubMedGoogle Scholar
  29. Moore M, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514PubMedPubMedCentralCrossRefGoogle Scholar
  30. Munar MP, Matsuo T, Kimura K, Takahashi T, Okamura Y (2018) Biomineralization of metallic tellurium by bacteria isolated from deep marine sediment in Niigata Bay Japan. In: Endo K et al (eds) Biomineralization. Springer, Berlin, pp 291–301CrossRefGoogle Scholar
  31. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13CrossRefGoogle Scholar
  32. Neuwald AF (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767PubMedPubMedCentralCrossRefGoogle Scholar
  33. Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, Takeyama H (2010) Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria. Mar Biotechnol 12(4):395–402PubMedCrossRefGoogle Scholar
  34. Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL et al (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2:2CrossRefGoogle Scholar
  35. Pugin B, Cornejo FA, Muñoz-Diaz P, Muñoz-Villagran CM et al (2014) Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl Environ Microbiol 80(22):7061–7070PubMedPubMedCentralCrossRefGoogle Scholar
  36. Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115PubMedCrossRefGoogle Scholar
  37. Taylor DE, Rooker M, Keelan M, Ng LK, Martin I, Perna NT, Burland NTV, Blattner FR (2002) Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol 184:4690–4698PubMedPubMedCentralCrossRefGoogle Scholar
  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedPubMedCentralCrossRefGoogle Scholar
  39. Tucker FL, Walper JF, Appleman MD, Donohue J (1962) Complete reduction of tellurite to pure tellurium metal by microorganisms. J Bacteriol 83:1313–1314PubMedPubMedCentralGoogle Scholar
  40. Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40PubMedCrossRefGoogle Scholar
  41. Villamizar GAC, Nacke H, Griese L, Tabernero L et al (2019) Characteristics of the first protein tyrosine phosphatase with phytase activity from a soil metagenome. Genes 10:101–117CrossRefGoogle Scholar
  42. Whelan KF, Colleran E, Taylor DE (1995) Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI1 plasmid R478. J Bacteriol 177:5016–5027PubMedPubMedCentralCrossRefGoogle Scholar
  43. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33(1):103–119PubMedCrossRefGoogle Scholar
  44. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62(3):695–724PubMedPubMedCentralGoogle Scholar
  45. Zhang Y, Yang Z, Huang X, Peng J, Fei X, Gu S et al (2008) Cloning, expression, and characterization of a thermostable PAP2L2, a new member of the type-2 phosphatidic acid phosphatase family from Geobacillus toebii T-85. Biosci Biotechnol Biochem 72(12):3134–3141PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHiroshimaJapan
  2. 2.Unit of Biotechnology, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan

Personalised recommendations