Advertisement

Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii

  • Immacolata SerraEmail author
  • Claudia Capusoni
  • Francesco Molinari
  • Loana Musso
  • Luisa Pellegrino
  • Concetta Compagno
Original Article
  • 82 Downloads

Abstract

A screening among marine yeasts was carried out for nitrile hydrolyzing activity. Meyerozyma guilliermondii LM2 (UBOCC-A-214008) was able to efficiently grow on benzonitrile and cyclohexanecarbonitrile (CECN) as sole nitrogen sources. A two-step one-pot method for obtaining cells of M. guilliermondii LM2 (UBOCC-A-214008) endowed with high nitrilase activity was established; the resulting whole cells converted different nitriles with high molar conversions and showed interesting enantioselectivity toward racemic substrates. Nitrilase from M. guilliermondii LM2 (UBOCC-A-214008) displayed high activity on aromatic substrates, but also arylaliphatic and aliphatic substrates were accepted. Salt-resistant M. guilliermondii LM2 (UBOCC-A-214008) was used in media with different salinity, being highly active up to 1.5 M NaCl concentration. Finally, hydrolysis of nitriles was efficiently performed using a bioprocess (yeast growth and biotransformation with resting cells) entirely carried out in seawater.

Keywords

Marine yeast Nitrilase Meyerozyma guilliermondii Seawater Biocatalysis 

Notes

Acknowledgements

The authors acknowledge G. Burgaud (University of Brest) for kindly providing the yeast strains.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2019_9875_MOESM1_ESM.pdf (28 kb)
ESM 1 (PDF 27 kb)

References

  1. Anderson NG (2012) Solvent selection. In: Anderson NG (ed) Practical processes & development-a guide for organic chemists, 2nd edn. Academic Press, Oxford, pp 121–168CrossRefGoogle Scholar
  2. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44CrossRefGoogle Scholar
  3. Brewis EA, Van Der Walt JP, Prior BA (1995) The utilization of aromatic, cyclic and heterocyclic nitriles by yeasts. Syst Appl Microbiol 18:338–342CrossRefGoogle Scholar
  4. Burgaud G, Hue NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709CrossRefGoogle Scholar
  5. Chi Z, Zhang T, Liu G, Li J, Wang X (2009) Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 27:236–225CrossRefGoogle Scholar
  6. de Oliveira JR, Mizuno CM, Seleghim MH, Javaroti DC, Rezende MO, Landgraf MD, Sette LD, Porto AL (2013) Biotransformation of phenylacetonitrile to 2- hydroxyphenylacetic acid by marine fungi. Mar Biotechnol 15:97–103CrossRefGoogle Scholar
  7. De Vitis V, Guidi B, Contente ML Granato T, Conti P, Molinari F, Crotti E, Mapelli F, Borin S Daffonchio D, Romano D (2015) Marine microorganisms as source of stereoselective esterases and ketoreductases: kinetic resolution of a prostaglandin intermediate. Mar Biotechnol 17:144–152CrossRefGoogle Scholar
  8. Debabov VG, Yanenko AS (2011) Biocatalytic hydrolysis of nitriles. Rev J Chem 1:385–402CrossRefGoogle Scholar
  9. Dias JCT, Rezende RP, Rosa CA, Lachance M, Linardi VR (2000) Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65. Can J Microbiol 46:525–531CrossRefGoogle Scholar
  10. Domínguez de María P (2013) On the use of seawater as reaction media for large-scale applications in biorefineries. ChemCatChem 5:1643–1648CrossRefGoogle Scholar
  11. Gong J, Lu Z, Li H, Shi J, Zhou Z, Xu Z (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142CrossRefGoogle Scholar
  12. He Y, Xu J, Su J, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440CrossRefGoogle Scholar
  13. Hoyle AJ, Bunch AW, Knowles CJ (1998) The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzym Microb Technol.  https://doi.org/10.1016/S0141-0229(98)00076-3
  14. Kaplan O, Vejvoda V, Charvátová-Pinvejcová A, Martínková L (2006) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896CrossRefGoogle Scholar
  15. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83CrossRefGoogle Scholar
  16. Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol.  https://doi.org/10.1016/j.cbpa.2009.11.018
  17. Martínková L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K, Křen V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670CrossRefGoogle Scholar
  18. Meth-Cohn O, Wang M (1997) Rationalisation of the regioselective hydrolysis of aliphatic dinitriles with Rhodococcus rhodochrous AJ270. Chem Commun 0:1041–1042CrossRefGoogle Scholar
  19. Mukherjee C, Zhu D, Biehl ER, Hua L (2006) Exploring the synthetic applicability of a cyanobacterium nitrilase as catalyst for nitrile hydrolysis. Eur J Org Chem.  https://doi.org/10.1002/ejoc.200600699
  20. O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol 95:1161–1174CrossRefGoogle Scholar
  21. Petrícková A, Sosedov O, Baum S, Stolz A, Martínková L (2012) Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B Enzym.  https://doi.org/10.1016/j.molcatb.2012.01.005
  22. Rédou V, Navarri M, Meslet-Cadière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583CrossRefGoogle Scholar
  23. Rezende RP, Dias JCT, Rosa CA, Carazza F, Linardi VR (1999) Utilization of nitriles by yeasts isolated from a Brazilian gold mine. J Gen Appl Microbiol 45:185–192CrossRefGoogle Scholar
  24. Rustler S, Chmura A, Sheldon RA, Stolz A (2008) Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acidotolerant black yeast Exophiala oligosperma R1. Stud Mycol 61:165–174CrossRefGoogle Scholar
  25. Serra I, Guidi B, Burgaud G, Contente ML, Ferraboschi P, Pinto A, Compagno C, Molinari F, Romano D (2016) Seawater-based biocatalytic strategy: stereoselective reductions of ketones with marine yeasts. ChemCatChem.  https://doi.org/10.1002/cctc.201600947
  26. Spizzo P, Basso A, Ebert C, Gardossi L, Ferrario V, Romano D, Molinari F (2007) Resolution of (R,S)-flurbiprofen catalysed by dry mycelia in organic solvent. Tetrahedron 63:11005–11010CrossRefGoogle Scholar
  27. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106:703–727CrossRefGoogle Scholar
  28. Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499CrossRefGoogle Scholar
  29. Vejvoda V, Kaplan O, Klozová J, Masák J, Cejková A, Jirku V, Stloukal R, Martínková L (2006) Mild hydrolysis of nitriles by Fusarium solani strain O1. Folia Microbiol 51:251–256CrossRefGoogle Scholar
  30. Yamamoto K, Oishi K, Fujimatsu I, Komatsu K (1991) Production of R-(−)-Mandelic acid from Mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032Google Scholar
  31. Zaky AS, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14:813–825CrossRefGoogle Scholar
  32. Zambelli P, Serra I, Fernandez-Arrojo L, Plou FJ, Tamborini L, Conti P, Contente ML, Molinari F, Romano D (2015) Sweet-and-salty biocatalysis: fructooligosaccharides production using Cladosporium cladosporioides in seawater. Process Biochem 50:1086–1090CrossRefGoogle Scholar
  33. Zhang XH, Liu ZQ, Xue YP, Xu M, Zheng YG (2016) Nitrilase-catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase. Biotechnol Appl Biochem 63:479–448CrossRefGoogle Scholar
  34. Zhang Q, Gong J, Dong T, Liu T, Li H, Dou W, Lu Z, Shi J, Xu Z (2017) Nitrile-hydrolyzing enzyme from Meyerozyma guilliermondii and its potential in biosynthesis of 3-hydroxypropionic acid. Bioprocess Biosyst Eng.  https://doi.org/10.1007/s00449-017-1754-6

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food, Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly

Personalised recommendations