Ruegeria sp. Strains Isolated from the Reef-Building Coral Galaxea fascicularis Inhibit Growth of the Temperature-Dependent Pathogen Vibrio coralliilyticus

  • Natsuko MiuraEmail author
  • Keisuke Motone
  • Toshiyuki Takagi
  • Shunsuke Aburaya
  • Sho Watanabe
  • Wataru Aoki
  • Mitsuyoshi Ueda
Short Communication


The coral microbiome has attracted increased attention because of its potential roles in host protection against deadly diseases. However, little is known about the role of coral-associated bacteria against the temperature-dependent opportunistic pathogen Vibrio coralliilyticus. In this study, we tested whether bacteria associated with the reef-building coral Galaxea fascicularis could inhibit the growth of V. coralliilyticus. Twenty-nine cultivable bacteria were successfully isolated from a healthy colony of G. fascicularis kept in an aquarium. Among the bacterial isolates, three Ruegeria sp. strains inhibited the growth of V. coralliilyticus P1 as a reference strain and Vibrio sp. isolated in this study. Ruegeria sp. strains were also detected from other G. fascicularis colonies in the aquarium and in previous field studies by 16S rRNA amplicon sequencing, suggesting that Ruegeria sp. strains are common among G. fascicularis colonies. These results illuminate the potential role of Ruegeria sp. in protecting corals against pathogenic Vibrio species.


Coral-associated bacteria Ruegeria Vibrio coralliilyticus Antibacterial activity 16S rRNA amplicon sequencing 



We thank Dr. Chuya Shinzato of the University of Tokyo for his fruitful discussions. This study was partially supported by JSPS Research Fellowships for Young Scientists (K.M., 17J07458, and S.A., 16J08791) and Postdoctoral Researchers (T.T., 17J05024), as well as Grant-in-aid for Young Scientists (KAKENHI) (T.T., 18K14479). This study was also partially supported by JST-CREST (N.M., W.A., M.U., JPMJCR16G2).

Supplementary material

10126_2018_9853_MOESM1_ESM.pdf (604 kb)
ESM 1 (PDF 604 kb)
10126_2018_9853_MOESM2_ESM.xlsx (41 kb)
ESM 2 (XLSX 40 kb)


  1. Apprill A, Hughen K, Mincer T (2013) Major similarities in the bacterial communities associated with lesioned and healthy fungiidae corals. Environ Microbiol 15:2063–2072CrossRefPubMedGoogle Scholar
  2. Aswani S, Mumby PJ, Baker AC, Christie P, McCook LJ, Steneck RS, Richmond RH (2015) Scientific frontiers in the management of coral reefs. Front Mar Sci 2:50CrossRefGoogle Scholar
  3. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing J Bacteriol 193:6576–6585PubMedGoogle Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340CrossRefPubMedGoogle Scholar
  7. Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD, Sweatman H, Melendy AM (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:e124CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai L et al (2018) Season structures prokaryotic partners but not algal symbionts in subtropical hard corals. Appl Microbiol Biotechnol 102:4963–4973CrossRefPubMedGoogle Scholar
  9. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casey JM, Connolly SR, Ainsworth TD (2015) Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Sci Rep 5:11903CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cervino JM, Hayes RL, Polson SW, Polson SC, Goreau TJ, Martinez RJ, Smith GW (2004) Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl Environ Microbiol 70:6855–6864CrossRefPubMedPubMedCentralGoogle Scholar
  12. Christie-Oleza JA, Armengaud J (2010) In-depth analysis of exoproteomes from marine bacteria by shotgun liquid chromatography-tandem mass spectrometry: the Ruegeria pomeroyi DSS-3 case-study. Mar Drugs 8:2223–2239CrossRefPubMedPubMedCentralGoogle Scholar
  13. Christie-Oleza JA, Pina-Villalonga JM, Bosch R, Nogales B, Armengaud J (2012) Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria. Mol Cell Proteomics 11:M111 013110CrossRefPubMedGoogle Scholar
  14. Donner SD, Rickbeil GJM, Heron SF (2017) A new, high-resolution global mass coral bleaching database. PloS One 12:e0175490CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  16. Garren M, Son K, Tout J, Seymour JR, Stocker R (2016) Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J 10:1363–1372CrossRefPubMedGoogle Scholar
  17. Glasl B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J 10:2280–2292CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hanshew AS, Mason CJ, Raffa KF, Currie CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods 95:149–155CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hughes TP et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377CrossRefPubMedGoogle Scholar
  20. Kimes NE et al (2012) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846CrossRefPubMedGoogle Scholar
  21. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Biol Sci 280:20122328CrossRefPubMedPubMedCentralGoogle Scholar
  22. Laurans Y, Pascal N, Binet T, Brander L, Clua E, David G, Rojat D, Seidl A (2013) Economic valuation of ecosystem services from coral reefs in the South Pacific: taking stock of recent experience. J Environ Manag 116:135–144CrossRefGoogle Scholar
  23. Li J, Chen Q, Zhang S, Huang H, Yang J, Tian XP, Long LJ (2013) Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora. PloS One 8:e71301CrossRefPubMedPubMedCentralGoogle Scholar
  24. Luo H, Moran MA (2014) Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:573–587CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mera H, Bourne DG (2017) Disentangling causation: complex roles of coral-associated microorganisms in disease. Environ Microbiol 20:431–449CrossRefPubMedGoogle Scholar
  26. Miller TR, Belas R (2004) Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Appl Environ Microbiol 70:3383–3391CrossRefPubMedPubMedCentralGoogle Scholar
  27. Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R (2004) Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 70:4692–4701CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miranda LN, Hutchison K, Grossman AR, Brawley SH (2013) Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS One 8:e58269CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mitova M, Tommonaro G, Hentschel U, Muller WE, De Rosa S (2004) Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar Biotechnol (NY) 6:95–103CrossRefGoogle Scholar
  30. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  31. Mohamed NM, Cicirelli EM, Kan J, Chen F, Fuqua C, Hill RT (2008) Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ Microbiol 10:75–86CrossRefPubMedGoogle Scholar
  32. Moran MA et al (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73:4559–4569CrossRefPubMedPubMedCentralGoogle Scholar
  33. Motone K et al (2018) Protection of coral larvae from thermally induced oxidative stress by redox nanoparticles. Mar Biotechnol (NY) 20:542–548CrossRefGoogle Scholar
  34. Munn CB (2015) The role of vibrios in diseases of corals. Microbiol Spectr 3.
  35. Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498CrossRefGoogle Scholar
  36. Raina JB, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG (2016) Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4:e2275CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073CrossRefPubMedGoogle Scholar
  38. Rivers AR, Burns AS, Chan LK, Moran MA (2016) Experimental identification of small non-coding RNAs in the model marine bacterium Ruegeria pomeroyi DSS-3. Front Microbiol 7:380CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362CrossRefPubMedGoogle Scholar
  40. Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L (2009) The role of microorganisms in coral bleaching. ISME J 3:139–146CrossRefPubMedGoogle Scholar
  41. Rygaard AM, Thogersen MS, Nielsen KF, Gram L, Bentzon-Tilia M (2017) Effects of gelling agent and extracellular signaling molecules on the culturability of marine bacteria. Appl Environ Microbiol 83.
  42. Santos Ede O et al (2011) Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J 5:1471–1483CrossRefPubMedGoogle Scholar
  43. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sekar R, Kaczmarsky LT, Richardson LL (2008) Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser 362:85–98CrossRefGoogle Scholar
  45. Shapiro OH, Kramarsky-Winter E, Gavish AR, Stocker R, Vardi A (2016) A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat Commun 7:10860CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380CrossRefPubMedGoogle Scholar
  47. Sonnenschein EC, Nielsen KF, D'Alvise P, Porsby CH, Melchiorsen J, Heilmann J, Kalatzis PG, López-Pérez M, Bunk B, Spröer C, Middelboe M, Gram L (2017) Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. ISME J 11:588CrossRefPubMedPubMedCentralGoogle Scholar
  48. Stuhr M, Blank-Landeshammer B, Reymond CE, Kollipara L, Sickmann A, Kucera M, Westphal H (2018) Disentangling thermal stress responses in a reef-calcifier and its photosymbionts by shotgun proteomics. Sci Rep 8:3524CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sunagawa S et al (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3:512–521CrossRefPubMedGoogle Scholar
  50. Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. PLoS One 3:e2393CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG (2009) Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS One 4:e4511CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol 6:432CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ushijima B et al (2014a) Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl Environ Microbiol 80:2102–2109CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ushijima B, Videau P, Poscablo D, Vine V, Salcedo M, Aeby G, Callahan SM (2014b) Complete genome sequence of Vibrio coralliilyticus strain OCN014, isolated from a diseased coral at Palmyra Atoll. Genome Announc 2.
  55. Wada N, Pollock FJ, Willis BL, Ainsworth T, Mano N, Bourne DG (2016) In situ visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ 4:e2424CrossRefPubMedPubMedCentralGoogle Scholar
  56. Weynberg KD, Voolstra CR, Neave MJ, Buerger P, van Oppen MJ (2015) From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep 5:17889CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  3. 3.Japan Society for the Promotion of ScienceTokyoJapan
  4. 4.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations