Advertisement

Marine Biotechnology

, Volume 20, Issue 2, pp 131–143 | Cite as

Functional Transcripts Indicate Phylogenetically Diverse Active Ammonia-Scavenging Microbiota in Sympatric Sponges

  • Guofang Feng
  • Wei Sun
  • Fengli Zhang
  • Sandi Orlić
  • Zhiyong Li
Original Article

Abstract

Symbiotic ammonia scavengers contribute to effective removal of ammonia in sponges. However, the phylogenetic diversity and in situ activity of ammonia-scavenging microbiota between different sponge species are poorly addressed. Here, transcribed ammonia monooxygenase genes (amoA), hydrazine synthase genes (hzsA), and glutamine synthetase genes (glnA) were analyzed to reveal the active ammonia-scavenging microbiota in the sympatric sponges Theonella swinhoei, Plakortis simplex, and Phakellia fusca, and seawater. Archaeal amoA and bacterial glnA transcripts rather than bacterial amoA, hzsA, and archaeal glnA transcripts were detected in the investigated sponges and seawater. The transcribed amoA genes were ascribed to two Thaumarchaeota ecotypes, while the transcribed glnA genes were interspersed among the lineages of Cyanobacteria, Tectomicrobia, Poribacteria, Alpha-, Beta-, Gamma-, and Epsilonproteobacteria. In addition, transcribed abundances of archaeal amoA and bacterial glnA genes in these sponges have been quantified, showing significant variation among the investigated sponges and seawater. The transcriptome-based qualitative and quantitative analyses clarified the different phylogenetic diversity and transcription expression of functional genes related to microbially mediated ammonia scavenging in different sympatric sponges, contributing to the understanding of in situ active ecological functions of sponge microbial symbionts in holobiont nitrogen cycling.

Keywords

Sponge Ammonia-oxidizing archaea Ammonia-assimilating bacteria Functional transcript RT-qPCR assays 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (41776138 and U1301131), the 6th China-Croatia Science and Technology cooperation committee program (No. 6–13), and Minhang Leading Talent Project.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2018_9797_MOESM1_ESM.docx (350 kb)
ESM 1 (DOCX 350 kb)

References

  1. Aoi Y, Masaki Y, Tsuneda S, Hirata A (2004) Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community. Lett Appl Microbiol 39:477–482CrossRefPubMedGoogle Scholar
  2. Bayer K, Moitinho-Silva L, Brummer F, Cannistraci CV, Ravasi T, Hentschel U (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90:832–843CrossRefPubMedGoogle Scholar
  3. Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955CrossRefPubMedGoogle Scholar
  4. Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729CrossRefPubMedGoogle Scholar
  5. Christman GD, Cottrell MT, Popp BN, Gier E, Kirchman DL (2011) Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic ocean in summer and winter. Appl Environ Microbiol 77:2026–2034CrossRefPubMedPubMedCentralGoogle Scholar
  6. Church MJ, Short CM, Jenkins BD, Karl DM, Zehr JP (2005) Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 71:5362–5370CrossRefPubMedPubMedCentralGoogle Scholar
  7. Croue J, West NJ, Escande ML, Intertaglia L, Lebaron P, Suzuki MT (2013) A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci Rep 3:2583CrossRefPubMedPubMedCentralGoogle Scholar
  8. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509CrossRefPubMedPubMedCentralGoogle Scholar
  9. Damashek J, Smith JM, Mosier AC, Francis CA (2014) Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta. Front Microbiol 5:743PubMedGoogle Scholar
  10. De Corte D, Yokokawa T, Varela MM, Agogue H, Herndl GJ (2009) Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J 3:147–158CrossRefPubMedGoogle Scholar
  11. Diaz MC, Akob D, Cary CS (2004) Denaturing gradient gel electrophoresis of nitrifying microbes associated with tropical sponges. Boll Mus Ist Biol Univ Genova 68:279–289Google Scholar
  12. Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107CrossRefGoogle Scholar
  13. Dowle EJ, Pochon X, C Banks J, Shearer K, Wood SA (2016) Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour 16:1240–1254CrossRefPubMedGoogle Scholar
  14. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A 109:E1878–E1887CrossRefPubMedPubMedCentralGoogle Scholar
  15. Feng G, Sun W, Zhang F, Karthik L, Li Z (2016) Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci Rep 6:24966CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One 8:e72961CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fiore CL, Labrie M, Jarett JK, Lesser MP (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol 6:364CrossRefPubMedPubMedCentralGoogle Scholar
  18. Forchhammer K (2007) Glutamine signalling in bacteria. Front Biosci 12:13CrossRefGoogle Scholar
  19. Fredriksson NJ, Hermansson M, Wilen BM (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS One 8:e76431CrossRefPubMedPubMedCentralGoogle Scholar
  20. Freeman CJ, Thacker RW, Baker DM, Fogel ML (2013) Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J 7:1116–1125CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ (2015) Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J 9:2682–2696CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235CrossRefPubMedGoogle Scholar
  23. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, De La Torre J, Richardson PM, Delong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103:18296–18301CrossRefPubMedPubMedCentralGoogle Scholar
  24. Han M, Liu F, Zhang F, Li Z, Lin H (2012) Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations. Mar Biotechnol (NY) 14:701–713CrossRefGoogle Scholar
  25. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefPubMedGoogle Scholar
  26. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schlappy ML, Schleper C, Kuypers MM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243CrossRefPubMedGoogle Scholar
  27. Horak RE, Qin W, Schauer AJ, Armbrust EV, Ingalls AE, Moffett JW, Stahl DA, Devol AH (2013) Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME J 7:2023–2033CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503CrossRefPubMedPubMedCentralGoogle Scholar
  29. Izumi H, Sagulenko E, Webb RI, Fuerst JA (2013) Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie Van Leeuwenhoek 104:533–546CrossRefPubMedGoogle Scholar
  30. Jiménez E, Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr 52:948–958CrossRefGoogle Scholar
  31. Jing H, Xia X, Liu H, Zhou Z, Wu C, Nagarajan S (2015) Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing. Front Microbiol 6:1172CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jouett NJ, Bibbings ME, Sullivan CE, Parsons RJ (2015) Molecular investigation of the microbial community associated with the fire sponge, Tedania ignis, in Bermuda. PeerJ PrePrints 3:e1117Google Scholar
  33. Kong L, Jing H, Kataoka T, Buchwald C, Liu H (2013) Diversity and spatial distribution of hydrazine oxidoreductase (hzo) gene in the oxygen minimum zone off Costa Rica. PLoS One 8:e78275CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kuypers MM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MS (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611CrossRefPubMedGoogle Scholar
  35. Li M, Hong Y, Klotz MG, Gu JD (2010) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol 86:781–790CrossRefPubMedGoogle Scholar
  36. Li Z, Wang Y, Li J, Liu F, He L, He Y, Wang S (2016) Metagenomic analysis of genes encoding nutrient cycling pathways in the microbiota of deep-sea and shallow-water sponges. Mar Biotechnol (NY) 18:659–671CrossRefGoogle Scholar
  37. Li ZY, Wang YZ, He LM, Zheng HJ (2014) Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics. Sci Rep 4:3895CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu M, Fan L, Zhong L, Kjelleberg S, Thomas T (2012) Metaproteogenomic analysis of a community of sponge symbionts. ISME J 6:1515–1525CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lynn TM, Ge T, Yuan H, Wei X, Wu X, Xiao K, Kumaresan D, Yu SS, Wu J, Whiteley AS (2017) Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb Ecol 73:645–657Google Scholar
  40. Mcclintock JB, Amsler CD, Baker BJ, Van Soest RW (2005) Ecology of antarctic marine sponges: an overview. Integr Comp Biol 45:359–368CrossRefPubMedGoogle Scholar
  41. Mohamed NM, Enticknap JJ, Lohr JE, Mcintosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222CrossRefPubMedGoogle Scholar
  42. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48CrossRefPubMedGoogle Scholar
  43. Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014) Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698CrossRefPubMedGoogle Scholar
  44. Morrison DA (2007) Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Syst Biol 56:988–1010CrossRefPubMedGoogle Scholar
  45. Ozturk B, De Jaeger L, Smidt H, Sipkema D (2013) Culture-dependent and independent approaches for identifying novel halogenases encoded by Crambe crambe (marine sponge) microbiota. Sci Rep 3:2780CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pal S, Gregory-Eaves I, Pick FR (2015) Temporal trends in cyanobacteria revealed through DNA and pigment analyses of temperate lake sediment cores. J Paleolimnol 54:87–101CrossRefGoogle Scholar
  47. Paulot F, Jacob DJ, Johnson MT, Bell TG, Baker AR, Keene WC, Lima ID, Doney SC, Stock CA (2015) Global oceanic emission of ammonia: constraints from seawater and atmospheric observations. Glob Biogeochem Cycles 29:1165–1178CrossRefGoogle Scholar
  48. Perini F, Casabianca A, Battocchi C, Accoroni S, Totti C, Penna A (2011) New approach using the real-time PCR method for estimation of the toxic marine dinoflagellate Ostreopsis cf. ovata in marine environment. PLoS One 6:e17699CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pimentel-Elardo S, Wehrl M, Friedrich AB, Jensen PR, Hentschel U (2003) Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33:239–245CrossRefGoogle Scholar
  50. Polonia AR, Cleary DF, Freitas R, De Voogd NJ, Gomes NC (2015) The putative functional ecology and distribution of archaeal communities in sponges, sediment and seawater in a coral reef environment. Mol Ecol 24:409–423CrossRefPubMedGoogle Scholar
  51. Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382CrossRefPubMedPubMedCentralGoogle Scholar
  52. Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C (2012a) Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol 14:909–923CrossRefPubMedGoogle Scholar
  53. Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, Schleper C (2012b) Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol 14:1308–1324CrossRefPubMedGoogle Scholar
  54. Regnault M (1987) Nitrogen excretion in marine and fresh-water crustacea. Biol Rev 62:1–24CrossRefGoogle Scholar
  55. Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMedPubMedCentralGoogle Scholar
  58. Rua CP, Gregoracci GB, Santos EO, Soares AC, Francini-Filho RB, Thompson F (2015) Potential metabolic strategies of widely distributed holobionts in the oceanic archipelago of St Peter and St Paul (Brazil). FEMS Microbiol Ecol 91:fiv043CrossRefPubMedGoogle Scholar
  59. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, Delong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schlappy ML, Schottner SI, Lavik G, Kuypers MM, De Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602CrossRefPubMedGoogle Scholar
  61. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MM, Pommerening-Roeser A, Op Den Camp HJ, Jetten MS (2008) Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ Microbiol 10:3140–3149CrossRefPubMedGoogle Scholar
  63. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576CrossRefPubMedGoogle Scholar
  64. Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15:1647–1658CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sintes E, De Corte D, Haberleitner E, Herndl GJ (2016) Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean. Front Microbiol 7:77CrossRefPubMedPubMedCentralGoogle Scholar
  66. Southwell MW, Weisz JB, Martens CS, Lindquist N (2008) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986CrossRefGoogle Scholar
  67. Stark JM, Firestone MK (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol Biochem 28:1307–1317CrossRefGoogle Scholar
  68. Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, De Nys R, Wagner M, Taylor MW (2008) Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol 10:1087–1094CrossRefPubMedGoogle Scholar
  69. Tahon G, Tytgat B, Stragier P, Willems A (2016) Analysis of cbbL, nifH, and pufLM in soils from the Sor Rondane Mountains, Antarctica, reveals a large diversity of autotrophic and phototrophic bacteria. Microb Ecol 71:131–149CrossRefPubMedGoogle Scholar
  70. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  71. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–111CrossRefPubMedGoogle Scholar
  73. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF (2007) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59:47–63CrossRefPubMedGoogle Scholar
  74. Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, Olson JB, Erwin PM, Lopez-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870CrossRefPubMedPubMedCentralGoogle Scholar
  75. Thomas T, Rusch D, Demaere MZ, Yung PY, Lewis M, Halpern A, Heidelberg KB, Egan S, Steinberg PD, Kjelleberg S (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–1567CrossRefPubMedGoogle Scholar
  76. Tian RM, Sun J, Cai L, Zhang WP, Zhou GW, Qiu JW, Qian PY (2016) The deep-sea glass sponge Lophophysema eversa harbors potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ Microbiol 18:2481–2494CrossRefPubMedGoogle Scholar
  77. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995CrossRefPubMedGoogle Scholar
  78. Trindade-Silva AE, Rua C, Silva GG, Dutilh BE, Moreira AP, Edwards RA, Hajdu E, Lobo-Hajdu G, Vasconcelos AT, Berlinck RG, Thompson FL (2012) Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis. PLoS One 7:e39905CrossRefPubMedPubMedCentralGoogle Scholar
  79. van Kessel MA, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559CrossRefPubMedPubMedCentralGoogle Scholar
  80. Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  81. Wang J, Dong H, Wang W, Gu JD (2014) Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Appl Microbiol Biotechnol 98:2675–2686CrossRefPubMedGoogle Scholar
  82. Webster NS, Thomas T (2016) The sponge hologenome. MBio 7:e00135–e00116CrossRefPubMedPubMedCentralGoogle Scholar
  83. Weigel BL, Erwin PM (2015) Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl Environ Microbiol 82:650–658CrossRefPubMedGoogle Scholar
  84. Wiley GB, Kelly JA, Gaffney PM (2014) Use of next-generation DNA sequencing to analyze genetic variants in rheumatic disease. Arthritis Res Ther 16:490CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yahel G, Whitney F, Reiswig HM, Eerkes-Medrano DI, Leys SP (2007) In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol Oceanogr 52:428–440CrossRefGoogle Scholar
  86. Yang Z, Li Z (2012) Spatial distribution of prokaryotic symbionts and ammoxidation, denitrifier bacteria in marine sponge Astrosclera willeyana. Sci Rep 2:528CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225CrossRefGoogle Scholar
  88. Zhang F, Pita L, Erwin PM, Abaid S, Lopez-Legentil S, Hill RT (2014a) Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality. FEMS Microbiol Ecol 90:699–707CrossRefPubMedGoogle Scholar
  89. Zhang F, Vicente J, Hill RT (2014b) Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima. Front Microbiol 5:561PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guofang Feng
    • 1
  • Wei Sun
    • 1
  • Fengli Zhang
    • 1
  • Sandi Orlić
    • 2
    • 3
  • Zhiyong Li
    • 1
  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Ruđer Bošković InstituteZagrebCroatia
  3. 3.Center of Excellence for Science and Technology–Integration of Mediterranean region–STIMZagrebCroatia

Personalised recommendations