Advertisement

Marine Biotechnology

, Volume 20, Issue 2, pp 109–117 | Cite as

Glycogen Production in Marine Cyanobacterial Strain Synechococcus sp. NKBG 15041c

  • Amr Badary
  • Shouhei Takamatsu
  • Mitsuharu Nakajima
  • Stefano Ferri
  • Peter Lindblad
  • Koji Sode
Short Communication
  • 601 Downloads

Abstract

An important feature offered by marine cyanobacterial strains over freshwater strains is the capacity to grow in seawater, replacing the need for often-limited freshwater. However, there are only limited numbers of marine cyanobacteria that are available for genetic manipulation and bioprocess applications. The marine unicellular cyanobacteria Synechococcus sp. strain NKBG 15041c (NKBG15041c) has been extensively studied. Recombinant DNA technologies are available for this strain, and its genomic information has been elucidated. However, an investigation of carbohydrate production, such as glycogen production, would provide information for inevitable biofuel-related compound production, but it has not been conducted. In this study, glycogen production by marine cyanobacterium NKBG15041c was investigated under different cultivation conditions. NKBG15041c yielded up to 399 μg/ml/OD730 when cells were cultivated for 168 h in nitrogen-depleted medium (marine BG11ΔN) after medium replacement (336 h after inoculation). Cultivation under nitrogen-limited conditions also yielded an accumulation of glycogen in NKBG15041c cells (1 mM NaNO3, 301 μg/ml/OD730; 3 mM NaNO3, 393 μg/ml/OD730; and 5 mM NaNO3, 328 μg/ml/OD730) under ambient conditions. Transcriptional analyses were carried out for 13 putative genes responsible for glycogen synthesis and catabolism that were predicted based on homology analyses with Synechocystis sp. PCC 6803 (PCC6803) and Synechococcus sp. PCC7002 (PCC7002). The transcriptional analyses revealed that glycogen production in NKBG15041c under nitrogen-depleted conditions can be explained by the contribution of both increased carbon flux towards glycogen synthesis, similar to PCC6803 and PCC7002, and increased transcriptional levels of genes responsible for glycogen synthesis, which is different from the conventionally reported phenomenon, resulting in a relatively high amount of glycogen under ambient conditions compared to PCC6803 and PCC7002.

Keywords

Marine cyanobacteria Synechococcus Glycogen Bioprocess Carbohydrate production 

References

  1. Aichi M, Takatani N, Omata T (2001) Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183(20):5840–5847Google Scholar
  2. Aikawa S, Nishida A, Ho SH, Chang JS, Hasunuma T, Kondo A (2014) Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol Biofuels 7(1):88Google Scholar
  3. Badary A, Abe K, Ferri S, Kojima K, Sode K (2015) The development and characterization of an exogenous green-light-regulated gene expression system in marine cyanobacteria. Mar Biotechnol 17(3):245–251Google Scholar
  4. Camsund D, Heidorn T, Lindblad P (2014) Engineering of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng 8:4CrossRefPubMedPubMedCentralGoogle Scholar
  5. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Marsac NT, Castets AM, Cohen-Bazire G (1980) Wavelength modulation of phycoerythrin synthesis in Synechocystis sp. 6701. J Bacteriol 142(1):310–314PubMedPubMedCentralGoogle Scholar
  7. García-Domínguez M, Reyes JC, Florencio FJ (2000) NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803. Mol Microbiol 35(5):1192–1201Google Scholar
  8. Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gründel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158(Pt_12):3032–3043Google Scholar
  10. Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64(10):2943–2954Google Scholar
  11. Huang HH, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7(1):10Google Scholar
  12. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593Google Scholar
  13. Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70Google Scholar
  14. Joseph A, Aikawa S, Sasaki K, Teramura H, Hasunuma T, Matsuda F, Osanai T, Hirai MY, Kondo A (2014) Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett 588(3):466–471Google Scholar
  15. Kaniya Y, Kizawa A, Miyagi A, Kawai Yamada M, Uchimiya H, Kaneko Y, Nishiyama Y, Hihara Y (2013) Deletion of the transcriptional regulator cyAbrB2 deregulates primary carbon metabolism in Synechocystis sp. PCC 6803. Plant Physiol 162(2):1153–1163Google Scholar
  16. Kopf M, Klähn S, Scholz I, Matthiessen JK, Hess WR, Voß B (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21(5):527–539Google Scholar
  17. Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A (2017) Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnol Biofuels 10(1):56Google Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 25(4):402–408Google Scholar
  19. Ludwig M, Bryant DA (2012) Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol 3:145PubMedPubMedCentralGoogle Scholar
  20. Maeda Y, Ito Y, Honda T, Yoshino T, Tanaka T (2014) Inducible expression system for the marine cyanobacterium Synechococcus sp. strain NKBG 15041c. Int J Hydrog Energy 39(33):19382–19388Google Scholar
  21. Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF (2015) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol 4(5):595–603Google Scholar
  22. Möllers KB, Cannella D, Jørgensen H, Frigaard NU (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7(1):64Google Scholar
  23. Monshupanee T, Incharoensakdi A (2013) Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 116:830–838CrossRefPubMedGoogle Scholar
  24. Mustafa NR, De Winter W, Van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6(6):715–742Google Scholar
  25. Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M, Shirai M, Kanehisa M, Suzuki I, Murata N, Tanaka K (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE. J Biol Chem 280(35):30653–30659Google Scholar
  26. Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N, Tanaka K (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13(5):185–195Google Scholar
  27. Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Yokota-Hirai M (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20(6):525–535Google Scholar
  28. Radakovits R, Jinkerson RE, Darzins AL, Posewitz MC (2014) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefGoogle Scholar
  29. Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front Bioeng Biotechnol 2:17CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sode K, Tatara M, Takeyama H, Burgess JG, Matsunaga T (1992a) Conjugative gene transfer in marine cyanobacteria. Synechococcus sp., Synechocystis sp. and Pseudanabaena sp. Appl Microbiol Biotechnol 37(3):369–373Google Scholar
  31. Sode K, Tatara M, Ogawa S, Matsunaga T (1992b) Maintenance of broad host range vector pKT230 in marine unicellular cyanobacteria. FEMS Microbiol Lett 99(1):73–78Google Scholar
  32. Sode K, Tatara M, Hatano N, Matsunaga T (1994) Foreign gene expression in marine cyanobacteria under pseudo-continuous culture. J Biotechnol 33(3):243–248Google Scholar
  33. Sode K, Hatano N, Tatara M (1996a) Cloning of marine cyanobacterial promoter for foreign gene expression using a promoter probe vector. Appl Biochem Biotechnol 59(3):349–360Google Scholar
  34. Sode K, Hayashi T, Tatara M, Hatano N, Yoshida H, Takeyama H, Oshiro T, Matsunaga T (1996b) Recovery of marine cyanobacterial recombinant product using fish feed organisms. J Mar Biotechnol 4:82–86Google Scholar
  35. Sode K, Yamamoto Y, Hatano N (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene. J Mar Biotechnol 6:174–177PubMedGoogle Scholar
  36. Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW (2014) Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42:17CrossRefGoogle Scholar
  37. Work VH, Melnicki MR, Hill EA, Davies FK, Kucek LA, Beliaev AS, Posewitz MC (2015) Lauric acid production in a glycogen-less strain of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 3:48CrossRefPubMedPubMedCentralGoogle Scholar
  38. Xu Y, Guerra LT, Li Z, Ludwig M, Dismukes GC, Bryant DA (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng 6:56–67CrossRefGoogle Scholar
  39. Yoo SH, Lee BH, Moon Y, Spalding MH, Jane JI (2014) Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 9(3):e91524Google Scholar
  40. Yoshino T, Honda T, Tanaka M, Tanaka T (2013) Draft genome sequence of marine cyanobacterium Synechococcus sp. strain NKBG15041c. Genome Announc 1:e00954–e00913CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99(3):1521–1529Google Scholar
  42. Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium. Synechococcus sp. Lipids 35(10):1061–1064Google Scholar
  43. Zess EK, Begemann MB, Pfleger BF (2016) Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113(2):424–432Google Scholar
  44. Zhang S, Liu Y, Bryant DA (2015) Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-4-hydroxybutyrate. Metab Eng 32:174–183Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amr Badary
    • 1
    • 2
  • Shouhei Takamatsu
    • 1
    • 2
  • Mitsuharu Nakajima
    • 2
    • 3
  • Stefano Ferri
    • 2
    • 4
  • Peter Lindblad
    • 5
  • Koji Sode
    • 1
    • 2
    • 3
  1. 1.Department of Biotechnology and Life Science, Graduate School of EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.JST, CRESTTokyoJapan
  3. 3.Institute of Global Innovation ResearchTokyo University of Agriculture and TechnologyTokyoJapan
  4. 4.Department of Applied Chemistry and Biochemical EngineeringShizuoka UniversityShizuokaJapan
  5. 5.Department of Chemistry, Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations