Marine Biotechnology

, Volume 19, Issue 6, pp 579–591 | Cite as

Production of Tiger Puffer Takifugu rubripes Offspring from Triploid Grass Puffer Takifugu niphobles Parents

  • Masaomi HamasakiEmail author
  • Yutaka Takeuchi
  • Ryosuke Yazawa
  • Souta Yoshikawa
  • Kazushi Kadomura
  • Toshiyuki Yamada
  • Kadoo Miyaki
  • Kiyoshi Kikuchi
  • Goro Yoshizaki
Original Article


The tiger puffer Takifugu rubripes is one of the most popular aquacultural fish; however, there are two major obstacles to selective breeding. First, they have a long generation time of 2 or 3 years until maturation. Second, the parental tiger puffer has a body size (2–5 kg) much larger than average market size (0.6–1.0 kg). The grass puffer Takifugu niphobles is closely related to the tiger puffer and matures in half the time. Furthermore, grass puffer can be reared in small areas since their maturation weight is about 1/150 that of mature tiger puffer. Therefore, to overcome the obstacles of maturation size and generation time of tiger puffer, we generated surrogate grass puffer that can produce tiger puffer gametes through germ cell transplantation. Approximately 5000 tiger puffer testicular cells were transplanted into the peritoneal cavity of triploid grass puffer larvae at 1 day post hatching. When the recipient fish matured, both males and females produced donor-derived gametes. Through their insemination, we successfully produced donor-derived tiger puffer offspring presenting the same body surface dot pattern, number of dorsal fin rays, and DNA fingerprint as those of the donor tiger puffer, suggesting that the recipient grass puffer produced functional eggs and sperm derived from the donor tiger puffer. Although fine tunings are still needed to improve efficiencies, surrogate grass puffer are expected to accelerate the breeding process of tiger puffer because of their short generation time and small body size.


Spermatogonial transplantation Triploid Grass puffer Tiger puffer 


Funding Information

This study was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI) (25114005) on Innovative Areas, “Mechanisms regulating gamete formation in animals,” and the Ocean Resource Use Promotion Technology Development Program conducted by MEXT.

Supplementary material

10126_2017_9777_MOESM1_ESM.ppt (606 kb)
ESM 1 (PPT 605 kb)
10126_2017_9777_MOESM2_ESM.doc (30 kb)
ESM 2 (DOC 30 kb)


  1. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310CrossRefPubMedGoogle Scholar
  2. Bar I, Smith A, Bubner E, Yoshizaki G, Takeuchi Y, Yazawa R, Chen BN, Cummins S, Elizur A (2015) Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation. Reprod Fertil Dev.
  3. Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268CrossRefPubMedGoogle Scholar
  4. Chuda H, Matsuyama M, Ikeda Y, Matsuura S (1997) Development of the maturation- and ovulation-induction method in cultured tiger puffer Takifugu rubripes by hormone treatments. Nippon Suisan Gakkaishi 63:728–733CrossRefGoogle Scholar
  5. Hamasaki M, Takeuchi Y, Miyaki K, Yoshizaki G (2013) Gonadal development and fertility of triploid grass puffer Takifugu niphobles induced by cold shock treatment. Mar Biotechnol 15:133–144CrossRefPubMedGoogle Scholar
  6. Hayashi M, Sato M, Nagasaka Y, Sadaie S, Kobayashi S, Yoshizaki G (2014) Enrichment of spermatogonial stem cells using side population in teleost. Biol Reprod 91:23CrossRefPubMedGoogle Scholar
  7. Higuchi K, Takeuchi Y, Miwa M, Yamamoto Y, Tsunemoto K, Yoshizaki G (2011) Colonization, proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish Sci 77:69–77CrossRefGoogle Scholar
  8. Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol 3:424–442CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kakimoto Y, Aida S, Arai K, Suzuki R (1994) Neuters occurred in methyltestosterone treated ocellated puffer Takifugu rubripes. Fish Genet Breed Sci 20:63–66Google Scholar
  10. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno S, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kise K, Yoshikawa H, Sato M, Tashiro M, Yazawa R, Nagasaka Y, Takeuchi Y, Yoshizaki G (2012) Flow-cytometric isolation and enrichment of teleost type A spermatogonia based on light-scattering properties. Biol Reprod 86:107CrossRefPubMedGoogle Scholar
  13. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program primer3. Bioinformatics 23:1289–1291CrossRefPubMedGoogle Scholar
  14. Lacerda SM, Batlouni SR, Costa GM, Segatelli TM, Quirino BR, Queiroz BM, Kalapothakis E, Franca LR (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One 5:e10740CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci U S A 110:1640–1645CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee S, Seki S, Katayama N, Yoshizaki G (2015) Production of viable trout offspring derived from frozen whole fish. Sci Rep 5:16045CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lee S, Iwasaki Y, Yoshizaki G (2016a) Long-term (5 years) cryopreserved spermatogonia have high capacity to generate functional gametes via interspecies transplantation in salmonids. Cryobiology 73:286–290CrossRefPubMedGoogle Scholar
  18. Lee S, Katayama N, Yoshizaki G (2016b) Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem Biophys Res Commun 478:1478–1483CrossRefPubMedGoogle Scholar
  19. Majhi SK, Hattori RS, Rahman SM, Strüssmann CA (2014) Surrogate production of eggs and sperm by intrapapillary transplantation of germ cells in cytoablated adult fish. PLoS One 9:1–9CrossRefGoogle Scholar
  20. Matsuyama M, Chuda H, Ikeda Y, Tanaka H, Matsuura S (1997) Induction of ovarian maturation and ovulation in cultured tiger puffer Takifugu rubripes by different hormonal treatments. Suisanzoshoku 40:67–73Google Scholar
  21. Miyaki K (1998) Development of the artificial hybrid pufferfishes. Bull Nagasaki Pref Inst Fish 24:27–68Google Scholar
  22. Miyaki K, Tachihara K, Ebisu R, Tsukashima Y, Matsumura Y, Fujita S, Hayashida G, Tabeta O (1992) Induction of ovarian maturation of the tiger puffer, Takifugu rubripes by gonadotoropic hormone injections. Suisanzoshoku 40:439–442Google Scholar
  23. Morita T, Kumakura N, Morishima K, Mitsuboshi T, Ishida M, Hara T, Kudo S, Miwa M, Ihara S, Higuchi K, Takeuchi Y, Yoshizaki G (2012) Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata). Biol Reprod 86:1–11CrossRefGoogle Scholar
  24. Morita T, Morishima K, Miwa M, Kumakura N, Kudo S, Ichida K, Mitsuboshi T, Takeuchi Y, Yoshizaki G (2015) Functional sperm of the yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, jack mackerel (Trachurus japonicus). Mar Biotechnol 17:644–654CrossRefPubMedGoogle Scholar
  25. Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  26. Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G (2007) Production of trout offspring from triploid salmon parents. Science 317:1517CrossRefPubMedGoogle Scholar
  27. Okutsu T, Takeuchi Y, Yoshizaki G (2008a) Spermatogonial transplantation in fish: production of trout offspring from salmon parents. Fisheries for Global Welfare and Environment. TERRAPUB, Tokyo, pp 209–219Google Scholar
  28. Okutsu T, Kobayashi T, Takeuchi Y, Yoshizaki G (2008b) Identification of donor-derived germ cells and spermatozoa in xenogeneic recipient using species-specific primers against vasa gene in germ cell transplantation experiments. Fish Genet Breed Sci 37:29–36Google Scholar
  29. Okutsu T, Shikina S, Sakamoto T, Mochizuki M, Yoshizaki G (2015) Successful production of functional Y eggs derived from spermatogonia transplanted into female recipients and subsequent production of YY supermales in rainbow trout, Oncorhynchus mykiss. Aquaculture 446:298–302CrossRefGoogle Scholar
  30. Rashid H, Kitano H, Lee KH, Nii S, Shigematsu T, Kadomura K, Yamaguchi A, Matsuyama M (2007) Fugu (Takifugu rubripes) sexual differentiation: CYP19 regulation and aromatase inhibitor induced testicular development. Sex Dev 1:311–322CrossRefPubMedGoogle Scholar
  31. Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78:159–166CrossRefPubMedGoogle Scholar
  32. Shikina S, Nagasawa K, Hayashi M, Furuya M, Iwasaki Y, Yoshizaki G (2013) Short-term in vitro culturing improves transplantability of type a spermatogonia in rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 80:763–773PubMedGoogle Scholar
  33. Takeuchi Y, Yoshizaki G, Takeuchi T (2004) Surrogate broodstock produces salmonids. Nature 430:629–630CrossRefPubMedGoogle Scholar
  34. Takeuchi Y, Higuchi K, Yatabe T, Miwa M, Yoshizaki G (2009) Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol Reprod 81:1055–1063CrossRefPubMedGoogle Scholar
  35. Uno Y (1955) Spawning habit and early development of a puffer, Fugu (Torafugu) niphobles (Jordan et Snyder). J Tokyo Univ Fish 41:169–183Google Scholar
  36. Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629CrossRefPubMedGoogle Scholar
  37. Yano A, Suzuki K, Yoshizaki G (2008) Flow-cytometric isolation of testicular germ cells from rainbow trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa regulatory regions. Biol Reprod 78:151–158CrossRefPubMedGoogle Scholar
  38. Yazawa R, Takeuchi Y, Higuchi K, Yatabe T, Kabeya N, Yoshizaki G (2010) Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol Reprod 82:896–904CrossRefPubMedGoogle Scholar
  39. Yoshikawa H, Takeuchi Y, Ino Y, Wang J, Iwata G, Kabeya N, Yazawa R, Yoshizaki G (2016) Efficient production of donor-derived gametes from triploid recipients following intra-peritoneal germ cell transplantation into a marine teleost, Nibe croaker (Nibea mitsukurii). Aquaculture. aquaculture.2016.05.011
  40. Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Development 137:1227–1230CrossRefPubMedGoogle Scholar
  41. Yoshizaki G, Fujinuma K, Iwasaki Y, Okutsu T, Shikina S, Yazawa R, Takeuchi Y (2011) Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp Biochem Physiol Part D Genomics Proteomics 6:55–61CrossRefPubMedGoogle Scholar
  42. Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, Kume S, Hayashi M (2016) Production of germ cell-deficient salmonids by dead end gene knockdown, and their use as recipients for germ cell transplantation. Mol Reprod Dev 83:298–311CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Masaomi Hamasaki
    • 1
    Email author
  • Yutaka Takeuchi
    • 2
  • Ryosuke Yazawa
    • 3
  • Souta Yoshikawa
    • 1
  • Kazushi Kadomura
    • 1
  • Toshiyuki Yamada
    • 1
  • Kadoo Miyaki
    • 1
  • Kiyoshi Kikuchi
    • 4
  • Goro Yoshizaki
    • 3
  1. 1.Nagasaki Prefectural Institute of FisheriesNagasakiJapan
  2. 2.Division of Fisheries Resource and Sciences, Faculty of FisheriesKagoshima UniversityKagoshimaJapan
  3. 3.Department Marine BiosciencesTokyo University of Marine Science and TechnologyTokyoJapan
  4. 4.Fisheries Laboratory, Graduate School of Agricultural and Life SciencesUniversity of TokyoShizuokaJapan

Personalised recommendations