Marine Biotechnology

, Volume 19, Issue 5, pp 480–487 | Cite as

Draft Genome Sequence of the Deep-Sea Bacterium Moritella sp. JT01 and Identification of Biotechnologically Relevant Genes

  • Robert Cardoso de Freitas
  • Estácio Jussie Odisi
  • Chiaki Kato
  • Marcus Adonai Castro da Silva
  • André Oliveira de Souza Lima
Original Article


Deep-sea bacteria can produce various biotechnologically relevant enzymes due to their adaptations to high pressures and low temperatures. To identify such enzymes, we have sequenced the genome of the polycaprolactone-degrading bacterium Moritella sp. JT01, isolated from sediment samples from Japan Trench (6957 m depth), using a Illumina HiSeq2000 sequencer (12.1 million paired-end reads) and CLC Genomics Workbench (version 6.5.1) for the assembly, resulting in a 4.83-Mb genome (42 scaffolds). The genome was annotated using Rapid Annotation using Subsystem Technology (RAST), Protein Homology/analogY Recognition Engine V 2.0 (PHYRE2), and BLAST2Go, revealing 4439 protein coding sequences and 101 RNAs. Gene products with industrial relevance, such as lipases (three) and esterases (four), were identified and are related to bacterium’s ability to degrade polycaprolactone. The annotation revealed proteins related to deep-sea survival, such as cold-shock proteins (six) and desaturases (three). The presence of secondary metabolite biosynthetic gene clusters suggests that this bacterium could produce nonribosomal peptides, polyunsaturated fatty acids, and bacteriocins. To demonstrate the potential of this genome, a lipase was cloned an introduced into Escherichia coli. The lipase was purified and characterized, showing activity over a wide temperature range (over 50% at 20–60 °C) and pH range (over 80% at pH 6.3 to 9). This enzyme has tolerance to the surfactant action of sodium dodecyl sulfate and shows 30% increased activity when subjected to a working pressure of 200 MPa. The genomic characterization of Moritella sp. JT01 reveals traits associated with survival in the deep-sea and their potential uses in biotechnology, as exemplified by the characterized lipase.


Genomic Heterologous expression Bioprospecting Marine bacteria Lipase 



CAPES (Brazil, Process CAPES/JSPS 02/13), FAPESC (Brazil, Process 3422/2012), and CNPq-INCT-Mar COI (Brazil, Process 565062/2010-7) supported this work. We also thank CAPES for scholarship support provided to A.O.S.L (Process 08740/14-3), CNPq for scholarship provided to E.J.O. (Process 381573/2015-0), A.O.S.L (Process 311010/2015-6), and Santa Catarina State Govern for R.C.F. scholarships.

Supplementary material

10126_2017_9767_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)


  1. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16-W21Google Scholar
  2. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, Mcneil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42CrossRefPubMedGoogle Scholar
  4. Bianchi AC, Olazábal L, Torre A, Loperena L (2014) Antarctic microorganisms as source of the omega-3 polyunsaturated fatty acids. World J Microbiol Biotechnol 30:1869–1878CrossRefPubMedGoogle Scholar
  5. Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Chen X-L, Zhang Y-Z, Gao P-J, Luan X-W (2003) Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar Biol 143:989–993CrossRefGoogle Scholar
  7. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:619832CrossRefPubMedGoogle Scholar
  8. Dalmaso G, Ferreira D, Vermelho A (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dorden S, Mahadevan P (2015) Functional prediction of hypothetical proteins in human adenoviruses. Bioinformation 11:466–473CrossRefPubMedPubMedCentralGoogle Scholar
  10. Esteban-Torres M, Reverón I, Mancheño JM, De Las Rivas B, Muñoz R (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79: 5130–5136Google Scholar
  11. Fenchel T, Blackburn TH, King GM (2012) Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, LondonGoogle Scholar
  12. Hamajima Y, Nagae T, Watanabe N, Kato-Yamada Y, Imai T, Kato C (2014) Pressure effects on the chimeric 3-isopropylmalate dehydrogenases of the deep-sea piezophilic Shewanella benthica and the atmospheric pressure-adapted Shewanella oneidensis. Biosci Biotechnol Biochem 78:469–471CrossRefPubMedGoogle Scholar
  13. Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482CrossRefPubMedGoogle Scholar
  14. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470CrossRefPubMedGoogle Scholar
  15. Kanzog C, Ramette A, Quéric NV, Klages M (2008) Response of benthic microbial communities to chitin enrichment: an in situ study in the deep Arctic Ocean. Polar Biol 32:105CrossRefGoogle Scholar
  16. Kautharapu KB, Jarboe LR (2012) Genome sequence of the psychrophilic deep-sea bacterium Moritella marina MP-1 (ATCC 15381). J Bacteriol 194:6296–6297CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim J, Zobell CE (1972) Agarase, amylase, cellulase, and chitinase activity at deep-sea pressures. J Oceanogr 28:131–137CrossRefGoogle Scholar
  19. Konstantinidis KT, Braff J, Karl DM, Delong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A (2008) Selective enzymatic degradation of poly(ε-caprolactone) containing multiblock copolymers. Eur J Pharm Biopharm 68:46–56Google Scholar
  21. Lee I, Suzuki CK (2008) Functional mechanics of the ATP-dependent Lon protease—lessons from endogenous protein and synthetic peptide substrates. Biochim Biophys Acta 1784:727–735CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee SG, Koh HY, Lee JH, Kang S-H, Kim HJ (2012) Draft genome sequence of Moritella dasanensis strain ArB 0140, a psychrophilic bacterium isolated from the Arctic Ocean. J Bacteriol 194:5452–5453CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lima AODS, Cabral A, Andreote FD, Cavalett A, Pessatti ML, Andreote FD, Silva MaCD (2013) Draft genome sequence of Bacillus stratosphericus LAMA 585, isolated from the Atlantic Deep Sea. Genome Announc 1:e00204–e00213CrossRefPubMedPubMedCentralGoogle Scholar
  24. Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, Deboy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102:10913–10918CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nichols DS, Nichols PD, Mcmeekin TA (1993) Polyunsaturated fatty acids in Antarctic bacteria. Antarct Sci 5:149–160Google Scholar
  26. Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:71–77CrossRefPubMedGoogle Scholar
  27. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon M, De Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, Mchardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pan H-Q, Hu J-C (2015) Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment. Mar Genomics 23:55–57CrossRefPubMedGoogle Scholar
  29. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152CrossRefPubMedGoogle Scholar
  30. Pandey PK, Ramaswamy HS (2004) Effect of high-pressure treatment of milk on lipase and γ-glutamyl transferase activity. J Food Biochem 28:449–462CrossRefGoogle Scholar
  31. Quyen DT, Giang Le TT, Nguyen TT, Oh T-K, Lee J-K (2005) High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expr Purif 39:97–106CrossRefPubMedGoogle Scholar
  32. Ragukumar C (2005) Diversity and adaptations of deep-sea microorganisms. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. IK International Publishing House Pvt, Nova DelhiGoogle Scholar
  33. Ramalingam V, Rajaram R, Premkumar C, Santhanam P, Dhinesh P, Vinothkumar S, Kaleshkumar K (2014) Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J Basic Microbiol 54:928–936CrossRefPubMedGoogle Scholar
  34. Rawlings ND, Morton FR, Barrett AJ (2007) An introduction to peptidases and the MEROPS database. In: Polaina J, Maccabe AP (eds) Industrial enzymes. Springer, DordrechtGoogle Scholar
  35. Ruiz C, Blanco A, Pastor FIJ, Diaz P (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol Lett 217:263–267CrossRefPubMedGoogle Scholar
  36. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767–779CrossRefPubMedGoogle Scholar
  37. Salleh AB, Rahman NZRA, Basri M (2006) New lipases and proteases. Nova Science Publishers, New YorkGoogle Scholar
  38. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C (2010a) Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Japanese Soc Extremophiles 9:25–30CrossRefGoogle Scholar
  39. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C (2010b) Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep Res Dev 11:33–41CrossRefGoogle Scholar
  40. Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur J Biochem 269:5771–5779CrossRefPubMedGoogle Scholar
  41. Stoykov Y, Krastanov A, Pavlov A (2014) Optimization of cultural conditions for production of chitinase by bacterial soil isolate. In: Méndez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms: current status and trends. Academic Publishers, SpainGoogle Scholar
  42. Turley C (2000) Bacteria in the cold deep-sea benthic boundary layer and sediment—water interface of the NE Atlantic. FEMS Microbiol Ecol 33:89PubMedGoogle Scholar
  43. Wang Q, Zhang C, Hou Y, Lin X, Shen J, Guan X (2013) Optimization of cold-active lipase production from psychrophilic bacterium Moritella sp. 2-5-10-1 by statistical experimental methods. Biosci Biotechnol Biochem 77:17–21CrossRefPubMedGoogle Scholar
  44. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243Google Scholar
  45. Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, De Kegel D, Glansdorff N (2003) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538CrossRefPubMedGoogle Scholar
  46. Yang X, Lin X, Fan T, Bian J, Huang X (2008) Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2-5-10-1. Curr Microbiol 56:194–198CrossRefPubMedGoogle Scholar
  47. Yumoto I (ed) (2013) Cold-adapted Microorganisms. Caister Academic Press, PooleGoogle Scholar
  48. Zhang J, Lin S, Zeng R (2007) Cloning, expression, and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp.7195. J Microbiol Biotechnol 17:604–610PubMedGoogle Scholar
  49. Zhang J-W, Zeng R-Y (2008) Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar Biotechnol 10:612–621CrossRefPubMedGoogle Scholar
  50. Zhao Z, Herbst D, Niemeyer B, He L (2015) High pressure enhances activity and selectivity of Candida Rugosa lipase immobilized onto silica nanoparticles in organic solvent. Food Bioprod Process 96:240–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Robert Cardoso de Freitas
    • 1
  • Estácio Jussie Odisi
    • 1
  • Chiaki Kato
    • 2
  • Marcus Adonai Castro da Silva
    • 1
  • André Oliveira de Souza Lima
    • 1
  1. 1.Technological Science Center of Earth and SeaUNIVALIItajaiBrazil
  2. 2.Department of Marine Biodiversity ResearchJAMSTECYokosukaJapan

Personalised recommendations