Marine Biotechnology

, Volume 19, Issue 5, pp 469–479 | Cite as

Isolation and Antibiotic Screening of Fungi from a Hydrothermal Vent Site and Characterization of Secondary Metabolites from a Penicillium Isolate

  • Chengqian Pan
  • Yutong Shi
  • Bibi Nazia Auckloo
  • Syed Shams ul Hassan
  • Najeeb Akhter
  • Kuiwu Wang
  • Ying Ye
  • Chen-Tung Arthur Chen
  • Xinyi Tao
  • Bin Wu
Original Article

Abstract

Five new compounds were isolated from Penicillium sp. Y-5-2 including an austin derivative 4, four isocoumarins 9, 11, 12, and 13, together with two known isocoumarins 8 and 10, and six known austin derivatives 1, 2, 3, 5, 6, and 7 and one phenol 14. Their structures and relative configurations were established by spectroscopic means. The absolute configurations of 4, 11, and 13 were defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. The cyclization of the pentan-2-ol pendant at C-3 in compound 13 allowed the assignment of a new 2,3,4,4a,6,10b-hexahydro-1H-benzo[c]chromene isocoumarin skeleton. New compounds 9, 11, and 13 revealed inhibitory activities against E. coli at MIC values around 32 μg/mL. The known compound 14 showed potent antibiotic activity against Staphylococcus aureus and Bacillus subtilis with MIC values 8 and 2 μg/mL, respectively, with no cytotoxicity when tested in vitro. A rapid and efficient technique for selecting antibiotic fungal strain among eight marine-derived fungi was also described.

Keywords

Marine fungi Isocoumarin Antibacterial New skeleton 

Notes

Acknowledgments

This work was supported by NSFC (Nos. 81273386 and 81573306). We thank Prof. Hu-Jun Xie from the School of Food Science and Biotechnology, Zhejiang Gongshang University, for his kind help on the calculation of the ECD spectra and determination of the configurations.

Supplementary material

10126_2017_9765_MOESM1_ESM.doc (18.2 mb)
ESM 1(DOC 18684 kb)

References

  1. Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from Cannabis sativa: a structure− activity study. J Nat Prod 71:1427–1430CrossRefPubMedGoogle Scholar
  2. Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Tewtrakul S, Rungjindamai N (2010) Sakayaroj, Azaphilone and isocoumarin derivatives from the endophytic fungus Penicillium sclerotiorum PSU-A13. Chem Pharm Bull 58:1033–1036CrossRefPubMedGoogle Scholar
  3. Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J (2015) Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron 71:882–888CrossRefGoogle Scholar
  4. Bruhn T, Schaumloffel A, Hemberger Y (2015) SpecDis, version 1.63. University of Wuerzburg, WürzburgGoogle Scholar
  5. Chen CTA, Zeng Z, Kuo FW, Yang TF, Wang BJ, Tu YY (2005) Tide-influencedacidic hydrothermal system offshore NE Taiwan. Chem Geol 224:69–81CrossRefGoogle Scholar
  6. Ding Z, Wu J, Jiao C, Cao C (2016) Isolation of heavy metal-resistant fungi from contaminated soil and co-culturing with rice seedlings. Afr J Microbiol Res 10:1080–1085CrossRefGoogle Scholar
  7. Du L, Feng T, Zhao B, Li D, Gai S, Zhu T, Wang F, Xiao X, Gu Q (2010) Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J Antibiot 63:165–170CrossRefPubMedGoogle Scholar
  8. Fill TP, Pereira GK, Santos RM, Fo ER (2007) Four additional meroterpenes produced by Penicillium sp found in association with Melia azedarach. Possible biosynthetic intermediates to Austin. Z Naturforsch B 62:1035–1044CrossRefGoogle Scholar
  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, revision a.1. Gaussian, Inc., WallingfordGoogle Scholar
  10. Hayashi H, Mukaihara M, Murao S, Arai M, Lee AY, Clardy J (1994) Acetoxydehydroaustin, a new bioactive compound, and related compound Neoaustin from Penicillium sp. MG–11. Biosci Biotechnol Biochem 58:334–338CrossRefGoogle Scholar
  11. Holker JSE, O’Brien E, Simpson TJ (1983) The structures of some metabolites of Penicillium diversum: α-and β-diversonolic esters. J Chem Soc Perkin Trans 1:1365–1368CrossRefGoogle Scholar
  12. Horikoshi R, Tsuchida M, Tsujiuchi G, Oyama K, Mitomi M (2008) Novel austin derivative from a filamentous fungus, PF1364. J Pestic Sci 33:79Google Scholar
  13. Jiang W, Ye P, Chen CTA, Wang K, Liu P, He S, Wu X, Gan L, Ye Y, Wu B (2013) Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 11:4761–4772CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li Y, Ye D, Chen X, Lu X, Shao Z, Zhang H, Che Y (2009) Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J Nat Prod 72:912–916CrossRefPubMedGoogle Scholar
  15. Li S, Wei M, Chen G, Lin Y (2012) Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. collected from the South China Sea. Chem Nat Compd 48:371–373CrossRefGoogle Scholar
  16. Lo HC, Entwistle R, Guo CJ, Ahuja M, Szewczyk E, Hung JH, Chiang YM, Oakley BR, Wang CCC (2012) Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J Am Chem Soc 134:4709–4720CrossRefPubMedPubMedCentralGoogle Scholar
  17. Miao F, Yang R, Chen DD, Wang Y, Qin BF, Yang XJ, Zhou L (2012) Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules 17:14091–14098CrossRefPubMedGoogle Scholar
  18. Mosmman TJ (1983) Rapid colorimetric assay for cellular growth and survival: application toproliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  19. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ng NK, Huang JF, Ho PH (2000) Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Brachyura: Grapsidae) from Taiwan. Natl Taiwan Mus (Spec Publ Ser) 10:191–199Google Scholar
  21. Peng SH, Hung JJ, Hwang JS (2011) Bioaccumulation of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan. Mar Pollut Bull 63:396–401CrossRefPubMedGoogle Scholar
  22. Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11CrossRefPubMedGoogle Scholar
  23. Sahare P, Singh R, Laxman RS, Rao M (2012) Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl Biochem Biotechnol 168:1806–1819CrossRefPubMedGoogle Scholar
  24. Saleema M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152CrossRefGoogle Scholar
  25. Sureram S, Kesornpun C, Mahidol C, Ruchirawat S, Kittakoop P (2013) Directed biosynthesis through biohalogenation of secondary metabolites of the marine-derived fungus Aspergillus unguis. RSC Adv 3:1781–1788CrossRefGoogle Scholar
  26. Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26:44–71CrossRefPubMedGoogle Scholar
  27. Xu J (2015) Bioactive natural products derived from mangrove-associated microbes. RSC Adv 5:841–892CrossRefGoogle Scholar
  28. Xu GB, Pu X, Bai HH, Chen XZ, Li GY (2015) A new alternariol glucoside from fungus Alternaria alternate cib-137. Nat Prod Res 29:848–852CrossRefPubMedGoogle Scholar
  29. Zhou R, Li DL, Feng GL, Li GY (2013) A new sesquiterpene glucoside from Nicotiana rustica L. Nat Prod Res 27:1261–1264CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Chengqian Pan
    • 1
  • Yutong Shi
    • 1
  • Bibi Nazia Auckloo
    • 1
  • Syed Shams ul Hassan
    • 1
  • Najeeb Akhter
    • 1
  • Kuiwu Wang
    • 2
  • Ying Ye
    • 1
  • Chen-Tung Arthur Chen
    • 3
  • Xinyi Tao
    • 4
  • Bin Wu
    • 1
  1. 1.Ocean CollegeZhejiang UniversityHangzhouChina
  2. 2.Department of Applied ChemistryZhejiang Gongshang UniversityHangzhouChina
  3. 3.Institute of Marine Geology and ChemistryNational Sun Yat-sen UniversityKaohsiungRepublic of China
  4. 4.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations