Advertisement

Marine Biotechnology

, Volume 19, Issue 4, pp 345–350 | Cite as

A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila

  • Helu Liu
  • Hui Wang
  • Shanya Cai
  • Haibin ZhangEmail author
Original Article

Abstract

One paradox of the trophic biochemistry of the deep sea giant tubeworm Riftia pachyptila, endemic to hydrothermal vent sites and nourished by polyunsaturated fatty acid (PUFA) deficiency chemolitoautotrophic sulfide-oxidizing bacteria, is the source of their PUFAs. Biosynthesis of PUFA starts with two precursors C18:2n-6 and C18:3n-3, which cannot be biosynthesized by most animals due to lack of ω6- and ω3-desaturase; thus, C18:2n-6 and C18:3n-3 are generally essential fatty acids for animals. Here, we characterized a gene derived from the R. pachyptila located by hydrothermal vent, which encoded a novel ω3-desaturase (Rp3Fad). The gene was identified by searching the R. pachyptila transcriptome database using known ω3-desaturases, and its predicted protein showed 37–45% identical to ω3-desaturases of fungus and microalgae, and only 31% identitical to nematode Caenorhabditis elegans ω3-desaturase. Expression in yeast Saccharomyces cerevisiae showed that the Rp3Fad could desaturate C18:2n-6 and C18:3n-6 into C18:3n-3 and C18:4n-3, respectively, displaying a Δ15 activity similar to plant ω3-desaturase, but it showed no activity towards C20 n-6 PUFA substrates, differing from the well-characterized C. elegans ω3-desaturases. Δ5, Δ6, Δ8, and Δ12 activity were also tested, resulting in no corresponding production. The function of ω3-desaturase identified in R. pachyptila could produce C18:3n − 3 used in synthesis of n − 3 series PUFAs, suggesting an adaption to PUFA deficiency environment in deep sea hydrothermal vent.

Keywords

Giant tubeworm Riftia pachyptila PUFA biosynthesis Fatty acid Deep sea hydrothermal vent 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (41606152, 41576127), Strategic Priority Research Program of CAS (XDB06010104), Knowledge Innovation Program of the Chinese Academy of Sciences (CAS) (SIDSSE–201401, SIDSSE–QN–201407), “Hundred Talents Program” of CAS (SIDSSE–BR–201401, Y510021), and Major scientific and technological projects of Hainan Province (ZDKJ2016009 and ZDKJ2016012).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342CrossRefPubMedGoogle Scholar
  3. Conway N, Capuzzo JM (1991) Incorporation and utilization of bacterial lipids in the Solemya-Velum Symbiosis. Mar Biol 108:277–291CrossRefGoogle Scholar
  4. Fullarton JG, Dando PR, Sargent JR, Southward AJ, Southward EC (1995a) Fatty-acids of hydrothermal vent Ridgeia-Piscesae and inshore bivalves containing symbiotic bacteria. J Mar Biol Assoc UK 75:455–468CrossRefGoogle Scholar
  5. Fullarton JG, Wood P, Sargent JR (1995b) Fatty acid composition of lipids from sulphuroxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves. J Mar Biol Assoc UK 75:445–454CrossRefGoogle Scholar
  6. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hastings N, Agaba M, Tocher DR, Leaver MJ, Dick JR, Sargent JR, Teale AJ (2001) A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. PNAS 98:14304–14309CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jacq E, Prieur D, Nichols P, White DC, Porter T, Geesey GG (1989) Microscopic examination and fatty-acid characterization of filamentous bacteria colonizing substrata around subtidal hydrothermal vents. Arch Microbiol 152:64–71CrossRefGoogle Scholar
  9. Kawamoto J, Kurihara T, Yamamoto K, Nagayasu M, Tani Y, Mihara H, Hosokawa M, Baba T, Sato SB, Esaki N (2009) Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J Bacteriol 191:632–640CrossRefPubMedGoogle Scholar
  10. Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Delta4 activity. PNAS 107:16840–16845CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li JW, Zhou HY, Peng XT, Fu MY, Chen ZQ, Yao HQ (2011) Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney. J Sea Res 65:333–339CrossRefGoogle Scholar
  12. Liu H, Zhang H, Zheng H, Wang S, Guo Z, Zhang G (2014) PUFA biosynthesis pathway in marine scallop Chlamys Nobilis reeve. J Agric Food Chem 62:12384–12391CrossRefPubMedGoogle Scholar
  13. Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Ambrose SJ, Covello PS (2000) Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39:11948–11954CrossRefPubMedGoogle Scholar
  14. Monroig O, Tocher DR, Navarro JC (2013) Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs 11:3998–4018CrossRefPubMedPubMedCentralGoogle Scholar
  15. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68:97–106CrossRefPubMedGoogle Scholar
  16. Pereira SL, Huang YS, Bobik EG, Kinney AJ, Stecca KL, Packer JC, Mukerji P (2004) A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378:665–671CrossRefPubMedPubMedCentralGoogle Scholar
  17. Phleger CF, Nelson MM, Groce AK, Cary SC, Coyne KJ, Nichols PD (2005) Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comp Biochem Physiol B Biochem Mol Biol 141:196–210CrossRefPubMedGoogle Scholar
  18. Pond DW, Allen CE, Bell MV, Van Dover CL, Fallick AE, Dixon DR, Sargent JR (2002) Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgea piscesae and Protis hydrothermica. Mar Ecol Prog Ser 225:219–226CrossRefGoogle Scholar
  19. Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella Alpina 1S-4. Appl Microbiol Biotechnol 66:648–654CrossRefPubMedGoogle Scholar
  20. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794CrossRefPubMedGoogle Scholar
  21. Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560S–569SPubMedGoogle Scholar
  22. Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis. PNAS 94:1142–1147CrossRefPubMedPubMedCentralGoogle Scholar
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  24. Temara A, Deridder C, Kaisin M (1991) Presence of an essential polyunsaturated fatty-acid in intradigestive bacterial symbionts of a deposit-feeder echinoid (Echinodermata). Comp Biochem Physiol B Biochem Mol Biol 100:503–505CrossRefGoogle Scholar
  25. Vrablik TL, Watts JL (2013) Polyunsaturated fatty acid derived signaling in reproduction and development: insights from Caenorhabditis elegans and Drosophila melanogaster. Mol Reprod Dev 80:244–259CrossRefPubMedPubMedCentralGoogle Scholar
  26. Wakeham SG, Hedges JI, Lee C, Peterson ML, Hernes PJ (1997) Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Res II Top Stud Oceanogr 44:2131–2162CrossRefGoogle Scholar
  27. Zal F, Lallier FH, Wall JS, Vinogradov SN, Toulmond A (1996a) The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. I reexamination of the number and masses of its constituents. J Biol Chem 271:8869–8874CrossRefPubMedGoogle Scholar
  28. Zal F, Lallier FH, Green BN, Vinogradov SN, Toulmond A (1996b) The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. II complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra. J Biol Chem 271:8875–8881CrossRefPubMedGoogle Scholar
  29. Zal F, Leize E, Lallier FH, Toulmond A, Van Dorsselaer A, Childress JJ (1998) S-Sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. PNAS 95:8997–9002CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zeyda M, Staffler G, Hořejší V, Waldhäusl W, Stulnig TM (2002) LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids. J Biol Chem 277:28418–28423CrossRefPubMedGoogle Scholar
  31. Zhang CL, Huang ZY, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Deep Sea Science and EngineeringChinese Academy of ScienceSanyaChina

Personalised recommendations