Marine Biotechnology

, Volume 18, Issue 4, pp 466–474 | Cite as

Phylogenetic Relationship and Secondary Metabolite Production of Marine Fungi Producing the Cyclodepsipeptides Scopularide A and B

  • Annemarie Kramer
  • Antje Labes
  • Johannes F. ImhoffEmail author
Original Article


Strains originally affiliated to the genera Scopulariopsis and Microascus were compared regarding the scopularide production in order to investigate their ability to produce the cyclodepsipeptides and select the best suited candidate for subsequent optimisation processes. Phylogenetic calculations using available sequences of the genera Scopulariopsis and Microascus revealed that most of the sequences clustered within two closely related groups, comprising mainly Scopulariopsis/Microascus brevicaulis and Microascus sp., respectively. Interestingly, high yields of scopularide A were exhibited by three strains belonging to S./M. brevicaulis, while lower titres were observed for two strains of Microascus sp. Close phylogenetic distances within and between the two groups supported the proposed combination of both genera into one holomorph group. Short phylogenetic distances did not allow a clear affiliation at the species level on the basis of ribosomal DNA sequences, especially for Microascus sp. strains. Additionally, several sequences originating from strains assigned to Scopulariopsis exhibited a polyphyletic nature. The production pattern is in accordance with the phylogenetic position of the strains and significant production of scopularide B could only be observed for the S./M. brevicaulis strain LF580. Thus, the phylogenetic position marks the biotechnologically interesting strains and matters in optimisation strategies. In conclusion, the ability of all five strains to produce at least one of the scopularides suggests a distribution of the responsible gene cluster within the holomorph group. Setting the focus on the production of the cyclodepsipeptides, strain LF580 represents the best candidate for further strain and process optimisation.


Scopulariopsis/Microascus brevicaulis LF580 Microascus sp. Phylogeny of secondary metabolite producers Natural products Anamorph-teleomorph 



The authors wish to thank Rolf Schmaljohann for microscopic analyses, and Jutta Wiese for the supply of preliminary obtained ITS1-5.8S rRNA-ITS2 and 18S rRNA gene sequences. Abhishek Kumar provided sequences from the complete genome data of LF580 for researching the ITS1-5.8S rRNA-ITS2 fragment. Arlette Wenzel-Storjohann performed DNA isolation and conducted PCR for sequences analysis.

We thank the Institute of Clinical Molecular Biology in Kiel for providing Sanger sequencing as support in part by the DFG Cluster of Excellence “Inflammation at Interfaces” and “Future Ocean”. We thank the technicians S. Greve, S. Arndt and T. Henke for technical support.

This study was performed in the framework of the MARINE FUNGI, EU FP7 KBBE program, project no. 265926.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10126_2016_9707_MOESM1_ESM.doc (160 kb)
ESM 1 (DOC 159 kb)


  1. Abbott SP, Sigler L (2001) Heterothallism in the Microascaceae demonatrated by three species in the Scopulariopsis brevicaulis series. Mycologia 93:1211–1220CrossRefGoogle Scholar
  2. Abbott SP, Sigler L, Currah RS (1998) Microascus brevicaulis sp. nov., the teleomorph of Scopulariopsis brevicaulis, supports placement of Scopulariopsis with the Microascaceae. Mycologia 90:297–302CrossRefGoogle Scholar
  3. Barreiro C, Martin JF, Garcia-Estrada C (2012) Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012:105–109CrossRefGoogle Scholar
  4. Blunt JW, Munro MHG (2012) Dictionary of natural products on DVD. Chapman & Hall / CRC, Boca RatonGoogle Scholar
  5. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627PubMedCrossRefGoogle Scholar
  6. Dyková I, Pecková H, Kostka M (2008) Introduction of Mayorella gemmifera Schaeffer, 1926 into hylogenetic studies of Amoebozoa. Acta Protozool 47:205–210Google Scholar
  7. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766PubMedPubMedCentralCrossRefGoogle Scholar
  8. Harris SD, Turner G, Meyer V, Espeso EA, Specht T, Takeshita N, Helmstedt K (2009) Morphology and development in Aspergillus nidulans: a complex puzzle. Fungal Genet Biol 46:82–92CrossRefGoogle Scholar
  9. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hawksworth DL (2012) Managing and coping with names of pleomorphic fungi in a period of transition. IMA Fungus 3:15–24PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA et al (2011) The amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  13. Isaka M, Palasarn S, Kocharin K, Hywel-Jones NL (2007) Comparison of the bioactive secondary metabolites from the scale insect pathogens, anamorph Paecilomyces cinnamomeus, and teleomorph Torrubiella luteorostrata. J Antibiot (Tokyo) 60:577–581CrossRefGoogle Scholar
  14. Issakainen J, Jalava J, Hyvönen J, Sahlberg N, Pirne T, Campbell CK (2003) Relationships of Scopulariopsis based on LSUrDNA sequences. Med Mycol 41:31–42PubMedGoogle Scholar
  15. Ito T, Masubuchi M (2014) Dereplication of microbial extracts and related analytical technologies. J Antibiot (Tokyo) 67:353–360CrossRefGoogle Scholar
  16. Kramer A, Paun L, Imhoff JF, Kempken F, Labes A (2014) Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B. PLoS One. doi: 10.1371/journal.pone.0103320 Google Scholar
  17. Kramer A, Beck HC, Kumar A, Kristensen LP, Imhoff JF, Labes A (2015) Proteomic analysis of anti-cancerous scopularide production by a marine Microascus brevicaulis strain and its UV mutant. PLoS One 10(10):e0140047PubMedPubMedCentralCrossRefGoogle Scholar
  18. Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123PubMedCrossRefGoogle Scholar
  19. Kumar A, Henrissat B, Arvas M, Syed MF, Thieme N, Benz JP, Sørensen JL, Record E, Pöggeler S, Kempken F (2015) De novo assembly and genome analyses of the marine-derived Scopulariopsis brevicaulis strain LF580 unravels life-style traits and anticancerous scopularide biosynthetic gene cluster. PLoS One 10(10):e0140398PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lukassen MB, Saei W, Sondergaard TE, Tamminen A, Kumar A, Kempken F, Marilyn G, Wiebe MG, Sørensen JL (2015) Identification of the scopularide biosynthetic gene cluster in Scopulariopsis brevicaulis. Mar Drugs 13:4331–4343PubMedPubMedCentralCrossRefGoogle Scholar
  21. McLaughlin DJ, Hibbett DS, Lutzoni F, Spatafora JW, Vilgalys R (2009) The search for the fungal tree of life. Trends Microbiol 17:488–497PubMedCrossRefGoogle Scholar
  22. Morton FJ, Smith G (1963) The genera Scopulariopsis bainier, Microascus zukal, and Doratomyces corda. Mycol Pap 86:1–96Google Scholar
  23. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  24. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369PubMedCrossRefGoogle Scholar
  25. Pitt JI, Samson RA (2007) Nomenclatural considerations in naming species of Aspergillus and its teleomorphs. Stud Mycol 59:67–70PubMedPubMedCentralCrossRefGoogle Scholar
  26. Pitt JI, Taylor JW (2014) Aspergillus, its sexual states and the new international code of nomenclature. Mycologia 106:1051–1062PubMedCrossRefGoogle Scholar
  27. Ropars J, Cruaud C, Lacoste S, Dupont J (2012) A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 155:199–210PubMedCrossRefGoogle Scholar
  28. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246PubMedPubMedCentralCrossRefGoogle Scholar
  29. Smedsgaard J, Frisved JC (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J Microbiol Methods 25:5–17CrossRefGoogle Scholar
  30. Tamminen A, Kramer A, Labes A, Wiebe MG (2014) Production of scopularide A in submerged culture with Scopulariopsis brevicaulis. Microb Cell Factories. doi: 10.1186/1475-2859-13-89 Google Scholar
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedPubMedCentralCrossRefGoogle Scholar
  32. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936CrossRefGoogle Scholar
  33. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Chapter 38. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp 315–322Google Scholar
  34. Wickerham LJ (1951) Taxonomy of yeast. US Dept of Agriculture, USAGoogle Scholar
  35. Yu ZG, Lang G, Kajahn I, Schmaljohann R, Imhoff JF (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71:1052–1054PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Annemarie Kramer
    • 1
  • Antje Labes
    • 1
  • Johannes F. Imhoff
    • 1
    Email author
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations