Marine Biotechnology

, Volume 18, Issue 3, pp 372–383 | Cite as

Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus

  • Duarte Toubarro
  • Analuce Gouveia
  • Raquel Mesquita Ribeiro
  • Nélson Simões
  • Gonçalo da Costa
  • Carlos Cordeiro
  • Romana Santos
Original Article


Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.


Marine adhesion Sea urchin Tube feet Substratum adhesive protein Nectin 



This work was supported by Fundação para a Ciência e Tecnologia through a postdoctoral grant attributed to Duarte Toubarro (SFRH/BPD/ 77483/2011), a project research grant attributed to Analuce Gouveia, a postdoctoral grant and a research contract attributed to Gonçalo da Costa (SFRH/BPD/73779/2010, IF/00359/2014), a research contract by the Ciência 2008 program, and a postdoctoral grant attributed to Romana Santos (SFRH/BPD/109081/2015), and project grants attributed (PTDC/MAR/117360/2010), PEst-OE/QUI/UI0612/2013, UID/MULTI/00612/2013). The authors wish to acknowledge Dr. Fátima Gil and Miguel Cadete for sea urchin maintenance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10126_2016_9698_MOESM1_ESM.docx (17 kb)
Supplementary Table 1 (DOCX 17 kb)
10126_2016_9698_MOESM2_ESM.docx (16 kb)
Supplementary Table 2 (DOCX 15 kb)


  1. Ameye L, Hernann R, Dubois P, Flammang P (2000) Ultrastructure of the echinoderm cuticle after fast-freezing /freeze substitution and conventional chemical fixations. Microsc Res Tech 48:385–393CrossRefPubMedGoogle Scholar
  2. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871CrossRefPubMedGoogle Scholar
  3. Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665CrossRefPubMedGoogle Scholar
  4. Del Campo A, Schwotzer W, Gorb SN, Aldred N, Santos R, Flammang P (2013) Biological and biomimetic adhesives: challenges and opportunities—preface. In: Santos R, Aldred N, Gorb S, Flammang P (eds) Biological and biomimetic adhesives: challenges and opportunities. Springer, Berlin, pp 7–17Google Scholar
  5. Flammang P, Santos R, Haesaerts D (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In: Matranga V (ed) Progress in molecular and subcellular biology, marine molecular biotechnology. Echinodermata. Springer-Verlag, Berlin, pp 199–218Google Scholar
  6. Flammang P, Lambert A, Bailly P, Hennebert E (2009) Polyphosphoprotein containing marine adhesives. J Adhes 85:447–464CrossRefGoogle Scholar
  7. Hennebert E, Wattiez R, Flammang P (2011) Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar Biotechnol 13:484–495CrossRefPubMedGoogle Scholar
  8. Hennebert E, Wattiez R, Demeuldre M, Ladurner P, Hwang DS, Waitee JH, Flammang P (2014) Sea star tenacity mediated by a protein that fragments, then aggregates. PNAS 111(17):6317–6322CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hennebert E, Leroy B, Wattiez R, Ladurner P (2015) An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J Proteomics 128:83–91CrossRefPubMedGoogle Scholar
  10. Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279:1750–1760CrossRefPubMedGoogle Scholar
  11. Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux’s Arch Dev Biol 201:173–178CrossRefGoogle Scholar
  12. Mistry N, Harrington W, Lasda E, Wagner EJ, Garcia-Blanco MA (2003) Of urchins and men: evolution of an alternative splicing unit in fibroblast growth factor receptor genes. RNA 9:209–217CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ohkawa K, Nishida A, Yamamoto H, Waite JH (2004) A glycosylated byssal precursor protein from the green mussel Perna viridis with modified Dopa side-chains. Biofouling 20:101–115CrossRefPubMedGoogle Scholar
  14. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012, 640923CrossRefGoogle Scholar
  15. Santos R, Flammang P (2006) Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study. Biofouling 22:187–200CrossRefPubMedGoogle Scholar
  16. Santos R, Flammang P (2007) Intra- and interspecific variation of attachment strength in sea urchins. Mar Ecol Prog Ser 332:129–142CrossRefGoogle Scholar
  17. Santos R, Flammang P (2008) Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids. Mar Biol 154:37–49CrossRefGoogle Scholar
  18. Santos R, Gorb S, Jamar V, Flammang P (2005) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567CrossRefPubMedGoogle Scholar
  19. Santos R, da Costa G, Franco C, Gomes-Alves P, Flammang P, Coelho AV (2009) First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar Biotechnol 11:686–698CrossRefPubMedGoogle Scholar
  20. Santos R, Barreto A, Franco C, Coelho AV (2013) Mapping sea urchins tube feet proteome—a unique hydraulic mechano-sensory adhesive organ. J Proteomics 79:100–113CrossRefPubMedGoogle Scholar
  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  22. Smith AM (2006) The biochemistry and mechanics of gastropod adhesive gels. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, BerlinCrossRefGoogle Scholar
  23. Stanley MS, Callow ME, Callow JA (1999) Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha. Planta 210:61–71CrossRefPubMedGoogle Scholar
  24. Stewart RJ, Wang CS, Shao H (2011) Complex coacervates as a foundation for synthetic underwater adhesives. Adv Colloid Interface Sci 167:85–93CrossRefPubMedGoogle Scholar
  25. Taylor CM, Wang W (2007) Histidinoalanine: a crosslinking amino acid. Tetrahedron 63:9033–9047CrossRefGoogle Scholar
  26. Waite JH, Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893CrossRefPubMedGoogle Scholar
  27. Warner SC, Waite JH (1999) Expression of multiple forms of an adhesive plaque protein in an individual mussel, Mytilus edulis. Mar Biol 134:729–734CrossRefGoogle Scholar
  28. Xiang M, Bédard P-A, Wessel G, Filion M, Brandhorst BP, Klein WH (1988) Tandem duplication and divergence of a sea urchin protein belonging to the Troponin C superfamily. J Biol Chem 263:17173–17180PubMedGoogle Scholar
  29. Yu J, Wei W, Danner E, Ashley RK, Israelachvili JN, Waite JH (2011) Mussel protein adhesion depends on thiol-mediated redox modulation. Nat Chem Biol 7:588–590CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhao H, Sun C, Stewart RJ, Waite JH (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. J Biol Chem 280:42938–42944CrossRefPubMedGoogle Scholar
  31. Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096CrossRefPubMedGoogle Scholar
  32. Zhao H, Sagert J, Hwang DS, Waite JH (2009) Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J Biol Chem 284:23344–23352CrossRefPubMedPubMedCentralGoogle Scholar
  33. Zito F, Burke RD, Matranga V (2010) Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo. Matrix Biol 29:341–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Duarte Toubarro
    • 1
    • 2
  • Analuce Gouveia
    • 1
  • Raquel Mesquita Ribeiro
    • 3
    • 4
  • Nélson Simões
    • 1
  • Gonçalo da Costa
    • 3
    • 4
    • 5
  • Carlos Cordeiro
    • 3
    • 4
    • 5
  • Romana Santos
    • 3
    • 6
  1. 1.Centro de Biotecnologia dos Açores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
  2. 2.Structural and Cellular Microbiology UnitInstituto de Tecnologia Química e BiológicaOeirasPortugal
  3. 3.Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de LisboaCampo GrandePortugal
  4. 4.Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  5. 5.Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  6. 6.MARE—Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de LisboaCampo GrandePortugal

Personalised recommendations