Marine Biotechnology

, Volume 17, Issue 5, pp 533–564 | Cite as

Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors

  • Jessica Bolaños
  • Luis Fernando De León
  • Edgardo Ochoa
  • José Darias
  • Huzefa A. Raja
  • Carol A. Shearer
  • Andrew N. Miller
  • Patrick Vanderheyden
  • Andrea Porras-Alfaro
  • Catherina Caballero-George
Original Article

Abstract

Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58 % represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6 %) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50 % of the control and seven others inhibited between 30 and 45 %. Our results indicate that marine sponges from Panama are a “hot spot” of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges.

Keywords

Fungi Marine ecosystem Sponge Diversity Blood pressure Panama 

Supplementary material

10126_2015_9634_Fig6_ESM.gif (52 kb)
Online Resource 1

Rarefaction curves indicating the overall number of culturable fungal species found in three geographical regions (top panel) and isolated from multiple sponge orders (lower panel) as a function of sampling effort. Sponge orders shown in this figure represent the most common or the most sampled sponges. In both cases, there is no clear evidence for saturation in the number of species. (GIF 51 kb)

10126_2015_9634_MOESM1_ESM.tif (7 kb)
High resolution image (TIFF 7 kb)
10126_2015_9634_MOESM2_ESM.docx (42 kb)
Online Resource 2(DOCX 41 kb)

References

  1. Adachi K, Kanoh K, Wisespongp P, Nishijima M, Shizuri Y (2005) Clonostachysins A and B, new anti-dinoflagellate cyclic peptides from a marine-derived fungus. J Antibiot (Tokyo) 58:145–150CrossRefGoogle Scholar
  2. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedGoogle Scholar
  3. Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547CrossRefPubMedGoogle Scholar
  4. Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244CrossRefPubMedGoogle Scholar
  5. Caballero-George C, Vanderheyden PM, Solis PN, Pieters L, Shahat AA, Gupta MP, Vauquelin G, Vlietinck AJ (2001) Biological screening of selected medicinal Panamanian plants by radioligand-binding techniques. Phytomedicine 8:59–70CrossRefPubMedGoogle Scholar
  6. Caballero-George C, Vanderheyden PM, De Bruyne T, Shahat AA, Van den Heuvel H, Solis PN, Gupta MP, Claeys M, Pieters L, Vauquelin G, Vlietinck AJ (2002) In vitro inhibition of [3H]-angiotensin II binding on the human AT1 receptor by proanthocyanidins from Guazuma ulmifolia bark. Planta Med 68:1066–1071CrossRefPubMedGoogle Scholar
  7. Caballero-George C, Bolaños J, Ochoa E, Carballo JL, Cruz JA, Arnold AE (2010) Protocol to isolate sponge-associated fungi from tropical waters and an examination of their cardioprotective potential. Curr Trends Biotechnol Pharm 4:881–899Google Scholar
  8. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  9. Coates A (2001) En la Historia Geologica, Panama ha Cambiado el Mundo. In: Heckadon-Moreno S (ed) Panama: Puente Biológico. Instituto Smithsonian de Investigaciones Tropicales, Panama, pp 18–25Google Scholar
  10. Collin R, Diaz MC, Norenburg J, Rocha RM, Sanchez JA, Schulze A, Schwartz M, Valdes A (2005) Photographic identification guide to some common marine invertebrates of Bocas del Toro, Panama. Caribb J Sci 41:638–707Google Scholar
  11. Cruz LJ, Insua MM, Baz JP, Trujillo M, Rodriguez-Mias RA, Oliveira E, Giralt E, Albericio F, Cañedo LM (2006) IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J Org Chem 71:3335–3338Google Scholar
  12. D’Croz L, O’Dea A (2007) Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar Coast Shelf Sci 73:325–340CrossRefGoogle Scholar
  13. D’Croz L, Robertson DR (1997) Coastal oceanographic conditions affecting coral reefs on both sides of the Isthmus of Panama. Proc 8th Int Coral Reef Symp 2:2053–2058Google Scholar
  14. Da Silva M, Passarini MR, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29:1331–1339Google Scholar
  15. Deo SK, Daunert S (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in high throughput analysis. Fresenius J Anal Chem 369:258–266CrossRefPubMedGoogle Scholar
  16. Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol (NY) 13:713–721CrossRefGoogle Scholar
  17. Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD, Baker KM (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 29:2893–2902CrossRefPubMedGoogle Scholar
  18. Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P (2012) Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 10:1081–1091PubMedCentralCrossRefPubMedGoogle Scholar
  19. Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194CrossRefPubMedGoogle Scholar
  21. Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185CrossRefPubMedGoogle Scholar
  22. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  25. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefPubMedGoogle Scholar
  26. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  27. Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. Prog Mol Subcell Biol 53:15–52CrossRefPubMedGoogle Scholar
  28. Hills DM, Bull JJ (1993) An empirical test of bootstrapping as a method assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  29. Höller U, König GM, Wright AD (1999) Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J Nat Prod 62:114–118CrossRefPubMedGoogle Scholar
  30. Hooper JNA, Van Soest RWM (2002) Systema Porifera: a guide to the classification of sponges, vol 2. Kluwer Academic/Plenum Publisher, New YorkCrossRefGoogle Scholar
  31. Jackson J, D’Croz L (2003) El Oceano Se Divide. In: Coates AG (ed) Paseo Pantera. Smithsonian Books, Washington, pp 41–79Google Scholar
  32. Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. Br Mycol Soc Symp Ser 28:301–324CrossRefGoogle Scholar
  33. Julianti E, Oh H, Jang KH, Lee JK, Lee SK, Oh DC, Oh KB, Shin J (2011) Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J Nat Prod 74:2592–2594CrossRefPubMedGoogle Scholar
  34. Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490CrossRefPubMedGoogle Scholar
  35. Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, p 234–257Google Scholar
  36. Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M (2002) Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen 7:57–65CrossRefPubMedGoogle Scholar
  37. Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241CrossRefPubMedGoogle Scholar
  38. Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of cultivable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15CrossRefGoogle Scholar
  39. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72 http://mesquiteproject.org. Accessed 29 Oct 2012
  40. Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78CrossRefPubMedGoogle Scholar
  41. Masaki T (1989) The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol 13(Suppl 5):S1–S4, discussion S18 CrossRefPubMedGoogle Scholar
  42. Miao L, Kwong T, Qian PY (2006) Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol 72:1063–1073CrossRefPubMedGoogle Scholar
  43. Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P, Warnow T (2010) The CIPRES portals. CIPRES. 2009-08-04. URL: http://www.phylo.org/sub_sections/portal. Accessed Dec 2010. (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)
  44. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  45. Nakamura M, Ito Y, Ogawa K, Michisuji Y, Sato S, Takada M, Hayashi M, Yaginuma S, Yamamoto S (1995) Stachybocins, novel endothelin receptor antagonists, produced by Stachybotrys sp. M6222. I. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo) 48:1389–1395CrossRefGoogle Scholar
  46. Nikolaou A, Van den Eynde I, Tourwé D, Vauquelin G, Tóth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM (2013) [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 702:93–102CrossRefPubMedGoogle Scholar
  47. Ogawa T, Ando K, Aotani Y, Shinoda K, Tanaka T, Tsukuda E, Yoshida M, Matsuda Y (1995) RES-1214-1 and -2, novel non-peptidic endothelin type A receptor antagonists produced by Pestalotiopsis sp. J Antibiot (Tokyo) 48:1401–1406CrossRefGoogle Scholar
  48. Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, Ainsworth AM, Katzer W, Cheng XM, Hupe DJ (1995) Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot (Tokyo) 48:913–923CrossRefGoogle Scholar
  49. Pearman JK, Taylor JE, Kinghorn JR (2010) Fungi in aquatic habitats near St Andrews in Scotland. Mycosphere 1:11–21Google Scholar
  50. Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21CrossRefPubMedGoogle Scholar
  51. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 25 Feb 2013
  52. Richards T, Jones M, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 4:495–522CrossRefPubMedGoogle Scholar
  53. Ridgely RS, Gwynne JA (1989) A guide to the birds of Panama. Princeton University Press, PrincetonGoogle Scholar
  54. Salter CE, O’Donnell K, Sutton DA, Marancik DP, Knowles S, Clauss TM, Berliner AL, Camus AC (2012) Dermatitis and systemic mycosis in lined seahorses Hippocampus erectus associated with a marine-adapted Fusarium solani species complex pathogen. Dis Aquat Org 101:23–31CrossRefPubMedGoogle Scholar
  55. Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC, Zheng CJ, She ZG, Lin YC (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629–633CrossRefPubMedGoogle Scholar
  56. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW (2012) Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol 14:517–524CrossRefPubMedGoogle Scholar
  57. Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580CrossRefPubMedGoogle Scholar
  58. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771CrossRefPubMedGoogle Scholar
  59. Sun L, Li D, Tao M, Chen Y, Zhang Q, Dan F, Zhang W (2013) Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26. Nat Prod Res 27:1298–1304Google Scholar
  60. Suryanarayanan TS (2012) The diversity and importance of fungi associated with marine sponges. Bot Mar 55:553–564CrossRefGoogle Scholar
  61. Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaki T, Goto K (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228:102–108CrossRefPubMedGoogle Scholar
  62. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefPubMedGoogle Scholar
  63. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCentralCrossRefPubMedGoogle Scholar
  64. Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS (2013) Sponge-specific bacteria are widespread (but rare) in diverse marine environments. ISME J 7:438–443PubMedCentralCrossRefPubMedGoogle Scholar
  65. Timmermans PBM, Benfield P, Chiu AT, Herblin WF, Wong PC (1992) Angiotensin II receptors and functional correlates. Am J Hypertens 5:221S–235SCrossRefPubMedGoogle Scholar
  66. Vanderheyden PM, Fierens FL, De Backer JP, Fraeyman N, Vauquelin G (1999) Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Br J Pharmacol 126:1057–1065PubMedCentralCrossRefPubMedGoogle Scholar
  67. Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of cultivable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174CrossRefPubMedGoogle Scholar
  68. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  69. Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585PubMedCentralCrossRefPubMedGoogle Scholar
  70. Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang K, Virjmoed L, Qian P (2007) Effect of culture conditions on antifouling compound production of a sponge-associated fungus. Appl Microbiol Biotechnol 74:1221–1231CrossRefPubMedGoogle Scholar
  71. Zea S (1987) Esponjas del Caribe Colombiano. Catálogo Científico, BogotáGoogle Scholar
  72. Ziegler C, Leigh EG (2002) A magic web: the forest of Barro Colorado Island. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jessica Bolaños
    • 1
  • Luis Fernando De León
    • 1
  • Edgardo Ochoa
    • 2
  • José Darias
    • 3
  • Huzefa A. Raja
    • 4
  • Carol A. Shearer
    • 5
  • Andrew N. Miller
    • 6
  • Patrick Vanderheyden
    • 7
  • Andrea Porras-Alfaro
    • 8
  • Catherina Caballero-George
    • 1
  1. 1.Institute of Scientific Research and High Technology ServicesPanamaRepublic of Panama
  2. 2.Conservation InternationalArlingtonUSA
  3. 3.Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones CientíficasLa LagunaSpain
  4. 4.Department of Chemistry and BiochemistryThe University of North Carolina at GreensboroGreensboroUSA
  5. 5.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  6. 6.Illinois Natural History SurveyUniversity of IllinoisChampaignUSA
  7. 7.Faculty of Sciences and Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
  8. 8.Department of Biological SciencesWestern Illinois UniversityMacombUSA

Personalised recommendations