Advertisement

Marine Biotechnology

, Volume 17, Issue 3, pp 290–304 | Cite as

Antibacterial Metabolites and Bacteriolytic Enzymes Produced by Bacillus pumilus During Bacteriolysis of Arthrobacter citreus

  • Christiane Brack
  • Annett Mikolasch
  • Rabea Schlueter
  • Andreas Otto
  • Dörte Becher
  • Uwe Wegner
  • Dirk Albrecht
  • Katharina Riedel
  • Frieder Schauer
Original Article

Abstract

The marine isolate Bacillus pumilus SBUG 1800 is able to lyse living cells of Arthrobacter citreus on solid media as well as pasteurized A. citreus cells in liquid mineral salt medium. The cultivation of B. pumilus in the presence of pasteurized A. citreus is accompanied by an enhanced production of 2,5-diketopiperazines (DKPs). DKPs inhibit bacterial growth, but do not seem to cause bacteriolysis. This study shows that B. pumilus also lyses living cells of A. citreus in co-culture experiments as an intraguild predator, even if the inoculum of B. pumilus is low. In order to characterize the bacteriolytic process, more precisely changes in the extracellular metabolome and proteome have been analyzed under different culture conditions. Besides the known DKPs, a number of different pumilacidins and bacteriolytic enzymes are produced. Two lipopeptides with [M + H]+ = 1008 and [M + H]+ = 1022 were detected and are proposed to be pumilacidin H and I. While the lipopeptides lyse living bacterial cells in lysis test assays, a set of extracellular enzymes degrades the dead cell material. Two of the cell wall hydrolases involved have been identified as N-acetylmuramoyl-l-alanine amidase and beta-N-acetylglucosaminidase. These findings together with electron microscopic and cell growth monitoring during co-culture experiments give a detailed view on the bacteriolytic process.

Keywords

N-Acetylmuramoyl-l-alanine amidase Beta-N-acetylglucosaminidase Diketopiperazines Pumilacidin I Pumilacidin H Bacterivory Predation 

Notes

Acknowledgments

The authors thank Annette Meuche, Anne Reinhard, Stefan Bock, and Alexander Meene for laboratory assistance, Bob Jack for reviewing the manuscript, Dr. Birgit Voigt and Stefan Handtke for their helpful professional suggestions, and Dr. Dirk Albrecht for the MS/MS data analyzes of the native 1D gel and the 2D gels on which this work bases. We also thank the government of Mecklenburg-Vorpommern (Germany) for financial support in the form of a Landesgraduiertenstipendium.

References

  1. Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M (2012) The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat Prod Rep 29:961–979CrossRefPubMedGoogle Scholar
  2. Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957CrossRefPubMedCentralPubMedGoogle Scholar
  3. Biziulevichius GA, Lukauskas K (1998) In vivo studies on lysosubtilin. 3. Efficacy for treatment of mastitis and superficial lesions of the udder and teats in cows. Vet Res 29:441–56PubMedGoogle Scholar
  4. Bonnefond L, Arai T, Sakaguchi Y, Suzuki T, Ishitani R, Nureki O (2011) Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc Natl Acad Sci U S A 108:3912–3917CrossRefPubMedCentralPubMedGoogle Scholar
  5. Brack C, Mikolasch A, Pukall R, Schumann P, Köster M, Schauer F (2013) Bacteriolytic Bacillus species isolated from brackish waters of the Southern Baltic Sea. Mar Biol 160:2699–2709CrossRefGoogle Scholar
  6. Brack C, Mikolasch A, Schauer F (2014) 2,5-Diketopiperazines produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus. Mar Biotechnol. doi: 10.1007/s10126-014-9559-y PubMedGoogle Scholar
  7. Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32CrossRefPubMedGoogle Scholar
  8. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47:180–186CrossRefPubMedGoogle Scholar
  9. Dibner JJ, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84:634–43CrossRefPubMedGoogle Scholar
  10. Dixon M (1953) A nomogram for ammonium sulphate solutions. Biochem J 54:457–458Google Scholar
  11. Gong W, Wang J, Chen Z, Xia B, Lu G (2011) Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochem-US 50:3621–3627CrossRefGoogle Scholar
  12. Gonzalez-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35:415–424CrossRefPubMedGoogle Scholar
  13. Handtke S, Schroeter R, Juergen B, Methling K, Schlueter R, Albrecht D, van Hijum SAFT, Bongaerts J, Maurer KH, Lalk M, Schweder T, Hecker M, Voigt B (2014) Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS ONE 9:1CrossRefGoogle Scholar
  14. Hundt K, Wagner M, Becher D, Hammer F, Schauer F (1998) Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia pickettii in soil and compost. Chemosphere 36:2321–2335CrossRefPubMedGoogle Scholar
  15. Jurkevitch E, Davidov Y (2007) Phylogenetic diversity and evolution of predatory procaryotes. In: Jurkevitch E (ed) Predatory Prokaryotes: Biology, Ecology and Evolution. Springer-Verlag Berlin, HeidelbergGoogle Scholar
  16. Kalinovskaya NI, Kuznetsova TA, Ivanova EP, Romanenko LA, Voinov VG, Huth F, Laatsch H (2002) Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium. Mar Biotechnol 4:179–188CrossRefPubMedGoogle Scholar
  17. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096Google Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  19. Leisner JJ, Haaber J (2012) Intraguild predation provides a selection mechanism for bacterial antagonistic compounds. Proc R Soc Edinb B 279:4513–4521CrossRefGoogle Scholar
  20. Liu J, Liu W, Pan N, Chen Z (1990) The characterization of anti-rice bacterial blight polypeptide LCI. Rice Genet Newsl 7:151–154Google Scholar
  21. Lopez D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618CrossRefPubMedCentralPubMedGoogle Scholar
  22. Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899CrossRefPubMedCentralPubMedGoogle Scholar
  23. Margot P, Mauel C, Karamata D (1994) The gene of the n-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545CrossRefPubMedGoogle Scholar
  24. Melo FMP, Fiore MF, Moraes LAB, Silva-Stenico ME, Scramin S, Teixeira MD, Melo IS (2009) Antifungal compound produced by the cassava endophyte Bacillus pumilus Maiiim4A. Sci Agricola 66:583–592Google Scholar
  25. Mootz HD, Marahiel MA (1997) The tyrocidine biosynthesis operon of bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179:6843–6850PubMedCentralPubMedGoogle Scholar
  26. Moran S, Robertson K, Paradisi F, Rai DK, Murphy CD (2010) Production of lipopeptides in Bacillus sp CS93 isolated from Pozol. Fems Microbiol Lett 304:69–73Google Scholar
  27. Morikawa M, Ito M, Imanaka T (1992) Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J Ferment Bioeng 74:255–261CrossRefGoogle Scholar
  28. Nandy SK, Bapat PM, Venkatesh KV (2007) Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Lett 581:151–156CrossRefPubMedGoogle Scholar
  29. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics - production, isolation, chemical properties, structure and biological sctivity. J Antibiot 43:267–280CrossRefPubMedGoogle Scholar
  30. Niazi A, Manzoor S, Bejai S, Meijer J, Bongcam-Rudloff E (2013) Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens strain UCMB5033. EMBL/GenBank/DDBJ databasesGoogle Scholar
  31. Nithya C, Pandian SK (2010) The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Arch Microbiol 192:843–854Google Scholar
  32. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefPubMedGoogle Scholar
  33. Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst FA, Siebourg J, Mäder U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137. doi: 10.1038/ncomms1137
  34. Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13PubMedGoogle Scholar
  35. Prokof’eva NG, Kalinovskaya NI, Luk’yanov PA, Shentsova EB, Kuznetsova TA (1999) The membranotropic activity of cyclic acyldepsipeptides from bacterium Bacillus pumilus, associated with the marine sponge Ircinia sp. Toxicon 37:801–813CrossRefPubMedGoogle Scholar
  36. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–62PubMedGoogle Scholar
  37. Xie YX, Wright S, Shen YM, Du LC (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christiane Brack
    • 1
  • Annett Mikolasch
    • 1
  • Rabea Schlueter
    • 1
  • Andreas Otto
    • 1
  • Dörte Becher
    • 1
  • Uwe Wegner
    • 1
  • Dirk Albrecht
    • 1
  • Katharina Riedel
    • 1
  • Frieder Schauer
    • 1
  1. 1.Institute of MicrobiologyErnst-Moritz-Arndt-University of GreifswaldGreifswaldGermany

Personalised recommendations