Marine Biotechnology

, Volume 17, Issue 1, pp 8–22 | Cite as

First Haploid Genetic Map Based on Microsatellite Markers in Senegalese Sole (Solea senegalensis, Kaup 1858)

  • Ma. Jesús Molina-Luzón
  • Miguel Hermida
  • Rafael Navajas-Pérez
  • Francisca Robles
  • José Ignacio Navas
  • Carmelo Ruiz-Rejón
  • Carmen Bouza
  • Paulino Martínez
  • Roberto de la Herrán
Original Article


The Senegalese sole (Solea senegalensis, Kaup 1858) is a flatfish species of great value for aquaculture. In this study, we develop the first linkage map in this species based on microsatellite markers characterized from genomic DNA libraries and EST databases of Senegalese sole and from other flatfish species. Three reference gynogenetic families were obtained by chromosome-manipulation techniques: two haploid gynogenetics, used to assign and order microsatellites to linkage groups and another diploid gynogenetic family, used for estimating marker–centromere distances. The consensus map consists of 129 microsatellites distributed in 27 linkage groups (LG), with an average density of 4.7 markers per LG and comprising 1,004 centimorgans (cM). Additionally, 15 markers remained unlinked. Through half-tetrad analysis, we were able to estimate the centromere distance for 81 markers belonging to 24 LG, representing an average of 3 markers per LG. Comparative mapping was performed between flatfish species LG and model fish species chromosomes (stickleback, Tetraodon, medaka, fugu and zebrafish). The usefulness of microsatellite markers and the genetic map as tools for comparative mapping and evolution studies is discussed.


Linkage map Senegalese sole Microsatellite markers Flatfish Comparative mapping 



This work has been supported by the Spanish Ministry of Science and Innovation (AGL2009-11872), Pleurogene-Flatfish Genomics and the Consolider-Ingenio AQUAGENOMICS Project (CSD2007-00002).

Supplementary material

10126_2014_9589_MOESM1_ESM.doc (642 kb)
ESM 1 (DOC 641 kb)


  1. Ahsan B, Kobayashi D, Yamada T, Kasahara M, Sasaki S, Saito TLN, Nagayasu Y, Doi K, Nakatani Y, Qu W (2008) UTGB/medaka: genomic resource database for medaka biology. Nucleic Acids Res 36:D747–D752PubMedCentralPubMedGoogle Scholar
  2. Aliah RS, Taniguchi N (2000) Gene-centromere distances of six microsatellite DNA loci in gynogenesis Nishikigoi (Cyprinus carpio). Fish Genetics and Breeding Science 29:113–119Google Scholar
  3. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J, Dehal P, Christoffels A, Rash S, Hoon S, Smit A (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310PubMedGoogle Scholar
  4. Arijo S, Rico R, Chabrillon M, Diaz-Rosales P, Martínez-Manzanares E, Balebona MC, Magariños B, Toranzo AE, Moriñigo MA (2005) Effectiveness of a divalent vaccine for sole, Solea senegalensis (Kaup), against Vibrio harveyi and Photobacterium damselae subsp. piscicida. J Fish Dis 28:33–38PubMedGoogle Scholar
  5. Aritaki M, Seikai T (2004) Temperature effects on early development and occurrence of metamorphosis-related morphological abnormalities in hatchery-reared brown sole Pseudopleuronectes herzensteini. Aquaculture 240:517–530Google Scholar
  6. Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358PubMedCentralPubMedGoogle Scholar
  7. Bouza C, Sanchez L, Martínez P (1994) Karotypic characterization of turbot (Scophthalmus maximus) with conventional, fluorochrome and restriction endonuclease-banding techniques. Mar Biol 120:609–613Google Scholar
  8. Bouza C, Presa P, Castro J, Sánchez L, Martínez P (2002) Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. J Fish Aquat Sci Can 59:1460–1473Google Scholar
  9. Bouza C, Hermida M, Pardo BG, Fernández C, Fortes GG, Castro J, Sánchez L, Presa P, Pérez M, Sanjuán A, de Carlos A, Alvarez-Dios JÁ, Ezcurra S, Cal RM, Piferrer F, Martínez P (2007) A microsatellite genetic map of the turbot (Scophthalmus maximus). Genetics 177:2457–2467PubMedCentralPubMedGoogle Scholar
  10. Bouza C, Hermida M, Millán A, Vilas R, Vera M, Fernández C, Calaza M, Pardo BG, Martínez P (2008) Characterization of EST-derived microsatellites for gene mapping and evolutionary genomics in turbot. Anim Genet 39:666–670PubMedGoogle Scholar
  11. Bouza C, Hermida M, Pardo BG, Vera M, Fernández C, de la Herrán R, Navajas-Pérez R, Álvarez-Dios JA, Gómez-Tato A, Martínez P (2012) An expressed sequence tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54PubMedCentralPubMedGoogle Scholar
  12. Cabrita E, Soares F, Dinis MT (2006) Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality. Aquaculture 261:967–975Google Scholar
  13. Castaño-Sánchez C, Fuji K, Ozaki A, Hasegawa O, Sakamoto T, Morishima K, Nakayama I, Fujiwara A, Masaoka T, Okamoto H, Hayashida K, Tagami M, Kawai J, Hayashizaki Y, Okamoto N (2010) A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus). BMC Genomics 11:554PubMedCentralPubMedGoogle Scholar
  14. Castro J, Pino A, Hermida M, Bouza C, Riaza A, Ferreiro I, Sánchez L, Martínez P (2006) A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis): genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture 261:1194–1203Google Scholar
  15. Cerdà J, Mercadé J, Lozano JJ, Manchado M, Tingaud-Sequeira A, Astola A, Infante C, Halm S, Viñas J, Castellana B (2008) Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis): EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform. BMC Genomics 9:508PubMedCentralPubMedGoogle Scholar
  16. Cerdà J, Douglas S, Reith M (2010) Genomic resources for flatfish research and their applications. J Fish Biol 77:1045–1070PubMedGoogle Scholar
  17. Chen SL, Ma HY, Jiang Y, Liao XL, Meng L (2007) Isolation and characterization of polymorphic microsatellite loci from an EST library of turbot (Scophthalmus maximus) and cross-species amplification. Mol Ecol Notes 7:848–850Google Scholar
  18. Chen SL, Shao C-W, Xu GB, Liao XL, Tian YS (2008) Development of 15 novel dinucleotide microsatellite markers in the Senegalese sole Solea senegalensis. Fish Sci 74:1357–1359Google Scholar
  19. Chen SL, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Qi, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 3(46):253-60Google Scholar
  20. Chistiakov DA, Tsigenopoulos CS, Lagnel J, Guo YM, Hellemans B, Haley CS, Volckaert FAM, Kotoulas G (2008) A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Anim Genet 39:623–634PubMedGoogle Scholar
  21. Choo KHA (1998) Why is the centromere so cold? Genome Res 8:81–82PubMedGoogle Scholar
  22. Coimbra MRM, Hasegawa O, Kobayashi K, Koretsugu S, Ohara E, Okamoto N (2001) Twenty microsatellite markers from the Japanese flounder Paralichthys olivaceus. Fish Sci 67:358–360Google Scholar
  23. Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E, Ozaki A, Sakamoto T, Naruse K, Okamoto N (2003) A genetic linkage map of the Japanese. Aquaculture 220:203–218Google Scholar
  24. Coughlan J, McCarthy E, McGregor D, O'Donoghue P, Galvin P, Fitzgerald R, Daemen E, Imsland A, Stefansson S, Cross T (1996) Four polymorphic microsatellites in turbot Scophthalmus maximus. Anim Genet 27:441PubMedGoogle Scholar
  25. Cristescu MEA, Colbourne JK, Radivojac J, Lynch M (2006) A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: on the prospect of crustacean genomics. Genomics 88:415–430PubMedGoogle Scholar
  26. Danzmann RG, Gharbi K (2001) Gene mapping in fishes: a means to an end. Genetica 111:3–23PubMedGoogle Scholar
  27. De La Herrán R, Robles F, Navas JI, Hamman-Khalifa AM, Herrera M, Hachero I, Mora MJ, Ruiz Rejón C, Garrido-Ramos M, Ruiz Rejón M (2008) A highly accurate, single PCR reaction for parentage assignment in Senegal sole based on eight informative microsatellite loci. Aquac Res 39:1169–1174Google Scholar
  28. Diaz-Ferguson E, Cross I, Barrios M, Pino A, Castro J, Bouza C, Martinez P, Rebordinos L (2012) Genetic characterization, based on microsatellite loci, of Solea senegalensis (Soleidae, Pleuronectiformes) in Atlantic coast populations of the SW Iberian Peninsula. Cienc Mar 38:129–142Google Scholar
  29. Díaz-Rosales P, Arijo S, Chabrillón M, Alarcón FJ, Tapia-Paniagua ST, Martínez-Manzanares E, Moriñigo MA (2009) Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture 293:16–21Google Scholar
  30. Douglas SE, Knickle LC, Kimball J, Reith ME (2007) Comprehensive EST analysis of Atlantic halibut (Hippoglossus hippoglossus), a commercially relevant aquaculture species. BMC Genomics 8:144PubMedCentralPubMedGoogle Scholar
  31. Fernandez-Trujillo MA, Bejar J, Gallardo JB, Porta JM, Borrego JJ, Mendez T, Alvarez MC (2007) Molecular cloning and characterization of C-type lysozyme from Senegalese sole (Solea senegalensis). Aquaculture 272:S255Google Scholar
  32. Fortes G (2008) Desarrollo de un mapa genético con marcadores AFLPs y microsatélites en rodaballo (Scopthalmus maximus L.). Thesis doctoral Universidad de Santiago de CompostelaGoogle Scholar
  33. Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos CS, Sarropoulou E, Antonello J, Magoulas A, Mylonas CC, Babbucci M, Patarnello T, Power DM, Kotoulas G, Bargelloni L (2006) A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174:851–861PubMedCentralPubMedGoogle Scholar
  34. Funes V, Zuasti E, Catanese G, Infante C, Manchado M (2004) Isolation and characterization of ten microsatellite loci for Senegal sole (Solea senegalensis Kaup). Mol Ecol Notes 4:339–341Google Scholar
  35. García-Cegarra A, Merlo M, Ponce M, Portela-Bens S, Cross I, Manchado M, Rebordinos L (2013) A preliminary genetic map in Solea senegalensis (Pleuronectiformes, Soleidae) using BAC-FISH and next-generation sequencing. Cytogenet Genome Res 141:227–240PubMedGoogle Scholar
  36. Gavaia P, Dinis M, Cancela M (2002) Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea senegalensis). Aquaculture 211:305–323Google Scholar
  37. Gilbey J, Verspoor E, McLay A, Houlihan D (2004) A microsatellite linkage map for Atlantic salmon (Salmo salar). Anim Genet 35:98–105PubMedGoogle Scholar
  38. Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F, Quillet E (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302PubMedCentralPubMedGoogle Scholar
  39. Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP, Bonillo C, D’Cotta H, Pepey E, Soler L, Rodier-Goud M, D’Hont A, Conte MA, van Bers NEM, Penman DJ, Hitte C, Crooijmans RPMA, Kocher TD, Ozouf-Costaz C, Baroiller J, Galibert F (2012) A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics 13:222PubMedCentralPubMedGoogle Scholar
  40. Guzmán JM, Cal R, García-López A, Chereguini O, Kight K, Olmedo M, Sarasquete C, Mylonas CC, Peleteiro JB, Zohar Y, Mañanós EL (2011) Effects of in vivo treatment with the dopamine antagonist pimozide and gonadotropin-releasing hormone agonist (GnRHa) on the reproductive axis of Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 158:235–245PubMedGoogle Scholar
  41. Hermida M, Bouza C, Fernández C, Sciara A, Rodríguez-Ramilo ST, Fernández J, Martínez P (2013) Compilation of mapping resources in turbot (Scophthalmus maximus): a new integrated consensus genetic map. Aquaculture 414:19–25Google Scholar
  42. Hermida M, Rodríguez-Ramilo ST, Hachero-Cruzado I, Herrera M, Sciara AA, Bouza C, Fernández J, Martínez P (2014) First genetic linkage map for comparative mapping and QTL screening of brill (Scophthalmus rhombus). Aquaculture. doi: 10.1016/j.aquaculture.2013.02.041 Google Scholar
  43. Hinegardner R (1968) Evolution of cellular DNA content in teleost fishes. Am Nat 102:517–523Google Scholar
  44. Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Am Nat 106:621–644Google Scholar
  45. Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G, Vingron M (2008) Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res 18:1582–1591PubMedCentralPubMedGoogle Scholar
  46. Imsland AK, Foss A, Conceição LEC, Dinis MT, Delbare D, Schram E, Kamstra A, Rema P, White P (2003) A review of the culture potential of Solea solea and S. senegalensis. Rev Fish Biol Fish 13:379–408Google Scholar
  47. Infante C, Ponce M, Manchado M (2011) Duplication of calsequestrin genes in teleosts: molecular characterization in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 158:304–314PubMedGoogle Scholar
  48. Iyengar A, Piyapattanakorn S, Heipel DA, Stone DM, Howell BR, Child AR, MacLean N (2000) A suite of highly polymorphic microsatellite markers in turbot (Scophthalmus maximus L.) with potential for use across several flatfish species. Mol Ecol 9:368–371PubMedGoogle Scholar
  49. Jaillon O, Aury J-M, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedGoogle Scholar
  50. Ji XS, Chen SL, Liao XL, Yang JF, Xu TJ, Ma HY, Tian YS, Jiang YL, Wu P (2009) Microsatellite-centromere mapping in Cynoglossus semilaevis using gynogenetic diploid families produced by the use of homologous and non-homologous sperm. J Fish Biol 75:422–434PubMedGoogle Scholar
  51. Johnson SL, Gates MA, Johnson M, Talbot WS, Horne S, Baik K, Rude S, Wong JR, Postlewait JH (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142:1277–1288PubMedCentralPubMedGoogle Scholar
  52. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Baldwin J, Bloom T, Jaffe DB, Nicol R, Wilkinson J, Lander ES, Di Palma F, Lindblad-Toh K, Kingsley DM (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61PubMedCentralPubMedGoogle Scholar
  53. Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y (2005) A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics 171:227–238PubMedCentralPubMedGoogle Scholar
  54. Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol 3:424–442PubMedGoogle Scholar
  55. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106PubMedGoogle Scholar
  56. Kang J-H, Kim W-J, Lee W-J (2008) Genetic linkage map of olive flounder, Paralichthys olivaceus. Int J Biol Sci 4:143–149PubMedCentralPubMedGoogle Scholar
  57. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto SI, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719PubMedGoogle Scholar
  58. Kauffman EJ, Gestl EE, Kim DJ, Walker C, Hite JM, Yan G, Rogan PK, Johnson SL, Cheng KC (1995) Microsatellite–centromere mapping in the zebrafish (Danio rerio). Genomics 30:337–341PubMedGoogle Scholar
  59. Kelly PD, Chu F, Woods IG, Ngo-Hazelett P, Cardozo T, Huang H, Kimm F, Liao L, Yan Y-L, Zhou Y, Johnson SL, Abagyan R, Schier AF, Postlethwait JH, Talbot WS (2000) Genetic linkage mapping of zebrafish genes and ESTs. Genome Res 10:558–567PubMedCentralPubMedGoogle Scholar
  60. Kim DS, Cheong SC, Park SR, Lee JK (1988) Cytogenetic and biochemical studies on the flatfish, Paralichthys olivaceus. Bull Natl Fish Res Dev Agency (Korea) Yangsan 42:135–142Google Scholar
  61. Kocher TD, Lee WJ, Sobolewska H, Penman D, Mcandrew B (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–1232PubMedCentralPubMedGoogle Scholar
  62. Kosambi DD (1994) The estimation of map distances from recombination values. Ann Eugenics 12:172–175Google Scholar
  63. Kucuktas H, Wang S, Li P, He C, Xu P, Sha Z, Liu H, Jiang Y, Baoprasertkul P, Somridhivej B, Wang Y, Abernathy J, Guo X, Liu L, Muir W, Liu Z (2009) Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics 181:1649–1660PubMedCentralPubMedGoogle Scholar
  64. Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD (2005) A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–244PubMedCentralPubMedGoogle Scholar
  65. Li Q, Kijima A (2005) Segregation of microsatellite alleles in gynogenetic diploid Pacific abalone (Haliotis discus hannai). Mar Biotechnol 7:669–676PubMedGoogle Scholar
  66. Li Q, Kijima A (2006) Gynogenetic tetraploid larvae of the Pacific oyster Crassostrea gigas induced by inhibition of the 1st and 2nd meiotic divisions. Tohoku J Agric Res 57(1/2):1–10Google Scholar
  67. Lie O, Slettan A, Lingaas F, Olsaker I, Hordvik I, Refstie T (1994) Haploid gynogenesis: a powerful strategy for linkage analysis in fish. Anim Biotechnol 5:33–45Google Scholar
  68. Lindner KR, Seeb JE, Habicht C, Knudsen KL, Kretschmer E, Reedy DJ, Spruell P, Allendorf FW (2000) Gene–centromere mapping of 312 loci in pink salmon by half-tetrad analysis. Genome NRC 43:538–549Google Scholar
  69. Liu YG, Sun XQ, Gao H, Liu LX (2007) Microsatellite markers from an expressed sequence tag library of half-smooth tongue sole (Cynoglossus semilaevis) and their application in other related fish species. Mol Ecol Notes 7:1242–1244Google Scholar
  70. Martínez P, Hermida M, Pardo BG, Fernández C, Castro J, Cal RM, Álvarez-Dios JA, Gómez-Tato A, Bouza C (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88Google Scholar
  71. Massault C, Franch R, Haley C, De Koning DJ, Bovenhuis H, Pellizzari C, Patarnello T, Bargelloni L (2010a) Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Anim Genet 42:191–203PubMedGoogle Scholar
  72. Massault C, Hellemans B, Louro B, Batargias C, Van Houdt JKJ, Canario A, Volckaert FAM, Bovenhuis H, Haley C, De Koning DJ (2010b) QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax. Anim Genet 41:337–345PubMedGoogle Scholar
  73. Matsuoka MP, Gharrett AJ, Wilmot RL, Smoker WW (2004) Gene–centromere distances of allozyme loci in even- and odd-year pink salmon (Oncorhynchus gorbuscha). Genetica 121:1–11PubMedGoogle Scholar
  74. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138PubMedGoogle Scholar
  75. Molina-Luzón MJ, López JR, Navajas-Pérez R, Robles F, Ruiz-Rejón C, De La Herrán R (2012) Validation and comparison of microsatellite markers derived from Senegalese sole (Solea senegalensis, Kaup) genomic and expressed sequence tags libraries. Mol Ecol Resour 12:956–966PubMedGoogle Scholar
  76. Molina-Luzón MJ, López JR, Robles F, Navajas-Pérez R, Ruiz-Rejón C, De la Herrán R, Navas JI (2014) Chromosomal manipulation in Senegalese sole (Solea senegalensis Kaup, 1858): induction of triploidy and gynogenesis. J Appl Genetics. Doi:10-1007/s13353-014-0233-xGoogle Scholar
  77. Navajas-Pérez R, Robles F, Molina-Luzón MJ, De La Herrán R, Alvarez-Dios JA, Pardo BG, Vera M, Bouza C, Martínez P (2012) Exploitation of a turbot (Scophthalmus maximus L.) immune-related expressed sequence tag (EST) database for microsatellite screening and validation. Mol Ecol Resour 12:706–716PubMedGoogle Scholar
  78. Nomura K, Morishima K, Tanaka H, Unuma T, Okuzawa K, Ohta H, Arai K (2006) Microsatellite–centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families. Aquaculture 257:53–67Google Scholar
  79. Ooijen JW, Voorrips R E (2002) JoinMap: version 3.0: software for the calculation of genetic linkage maps. University and Research CenterGoogle Scholar
  80. Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquacult Res 42:103–114Google Scholar
  81. Pardo BG, Fernández C, Hermida M, Vázquez-López A, Pérez M, Presa P, Calaza M, Alvarez-Dios JA, Comesaña AS, Raposo-Guillán J, Bouza C, Martínez P (2007) Development and characterization of 248 novel microsatellite markers in turbot (Scophthalmus maximus). Genome NRC 50:329–332Google Scholar
  82. Pardo BG, Fernández C, Millán A, Bouza C, Vázquez-López A, Vera M, Alvarez-Dios JA, Calaza M, Gómez-Tato A, Vázquez M, Cabaleiro S, Magariños B, Lemos ML, Leiro JM, Martínez P (2008) Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens. BMC Vet Res 4:37PubMedCentralPubMedGoogle Scholar
  83. Pérez F, Ortiz J, Zhinaula M, Gonzabay C, Calderón J, Volckaert FAMJ (2005) Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy. Mar Biotechnol 7:554–569PubMedGoogle Scholar
  84. Ponce M, Salas-Leiton E, Garcia-Cegarra A, Boglino A, Coste O, Infante C, Gisbert E, Rebordinos L, Manchado M (2011) Genomic characterization, phylogeny and gene regulation of g-type lysozyme in sole (Solea senegalensis). Fish Shellfish Immunol 31:925–937PubMedGoogle Scholar
  85. Poompuang S, Na-Nakorn U (2004) A preliminary genetic map of walking catfish (Clarias macrocephalus). Aquaculture 232:195–203Google Scholar
  86. Porta J, Alvarez MC (2004) Development and characterization of microsatellites from Senegal sole (Solea Senegalensis). Mol Ecol Notes 4:277–279Google Scholar
  87. Porta J, Porta JM, Martínez-Rodríguez G, del Carmen Alvarez M (2006a) Development of a microsatellite multiplex PCR for Senegalese sole (Solea senegalensis) and its application to broodstock management. Aquaculture 256:159–166Google Scholar
  88. Porta J, Porta JM, Martínez-Rodríguez G, del Carmen Alvarez M (2006b) Genetic structure and genetic relatedness of a hatchery stock of Senegal sole (Solea senegalensis) inferred by microsatellites. Aquaculture 251:46–55Google Scholar
  89. Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates M, Ballinger EW, Africa D, Andrews R, Carl T, Eisen JS (1994) A genetic linkage map for the zebrafish. Science 264:699–703PubMedGoogle Scholar
  90. Prat F (2004) Pleurogene: El Primer Proyecto de Genómica de Peces en España. Instituto de Acuicultura de Torre de la Sal (IATS).Consejo Superior de Investigaciones Científicas (CSIC).
  91. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  92. Reid DP, Szanto A, Glebe B, Danzmann RG, Ferguson MM (2004) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 94:166–172Google Scholar
  93. Reid DP, Smith C-A, Rommens M, Blanchard B, Martin-Robichaud D, Reith M (2007) A genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.). Genetics 177:1193–1205PubMedCentralPubMedGoogle Scholar
  94. Rexroad CE, Rodriguez MF, Coulibaly I, Gharbi K, Danzmann RG, Dekoning J, Phillips R, Palti Y (2005) Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss). BMC Genomics 6:54PubMedCentralPubMedGoogle Scholar
  95. Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541PubMedCentralPubMedGoogle Scholar
  96. Rodríguez-Ramilo ST, De La Herrán R, Ruiz-Rejón C, Hermida M, Fernández C, Pereiro P, Figueras A, Bouza C, Toro MA, Martínez P (2013) Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol. doi: 10.1007/s10126-013-9544-x Google Scholar
  97. Ruan X, Wang W, Kong J, Yu F, Huang X (2010) Genetic linkage mapping of turbot (Scophthalmus maximus L.) using microsatellite markers and its application in QTL analysis. Aquaculture 308:89–100Google Scholar
  98. Ruan X, Wang W, Kong J, Hu J (2011) Isolation and analysis of microsatellites in the genome of turbot (Scophthalmus maximus L.). Afr J Biotechnol 10:507–518Google Scholar
  99. Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345PubMedCentralPubMedGoogle Scholar
  100. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  101. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467PubMedCentralPubMedGoogle Scholar
  102. Sarropoulou E, Fernandes JMO (2011) Comparative genomics in teleost species: knowledge transfer by linking the genomes of model and non-model fish species. CompBiochem Physiol D Genomics Proteomics 6:92–102Google Scholar
  103. Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol 10:227–233PubMedGoogle Scholar
  104. Sato T, Yokomizo S, Matsuda M, Hamaguchi S, Sakaizumi M (2001) Gene–centromere mapping of medaka sex chromosomes using triploid hybrids between Oryzias latipes and O. luzonensis. Genetica 111:71–75PubMedGoogle Scholar
  105. Schoen DJ (2000) Comparative genomics, marker density and statistical analysis of chromosome rearrangements. Genetics 154:943–952PubMedCentralPubMedGoogle Scholar
  106. Sémon M, Wolfe KH (2007) Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol 24:860–867PubMedGoogle Scholar
  107. Sha Z, Wang S, Zhuang Z, Wang Q, Li P, Ding H, Wang N, Liu Z, Chen S (2010) Generation and analysis of 10 000 ESTs from the half-smooth tongue sole Cynoglossus semilaevis and identification of microsatellite and SNP markers. J Fish Biol 76:1190–1204PubMedGoogle Scholar
  108. Slettan A, Olsaker I, Lie O (1997) Segregation studies and linkage analysis of Atlantic salmo microsatellites using haploid genetics. Heredity 78:620–627PubMedGoogle Scholar
  109. Soares F, Engrola S, Dinis MT (2002) Anomalías en la pigmentación de juveniles de lenguado (Solea senegalensis). Bol Inst Esp Oceanogr 18:405–407Google Scholar
  110. Steinke D, Hoegg S, Brinkmann H, Meyer A (2006) Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol 4:16PubMedCentralPubMedGoogle Scholar
  111. Stemshorn KC, Nolte AW, Tautz D (2005) A genetic map of Cottus gobio (Pisces, Teleostei) based on microsatellites can be linked to the physical map of Tetraodon nigroviridis. J Evol Biol 18:1619–1624PubMedGoogle Scholar
  112. Sun XW, Liang LQ (2004) A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238:165–172Google Scholar
  113. Thorgaard GH, Allendorf FW, Knudsen KL (1983) Gene–centromere mapping in rainbow trout: high interference over long map distances. Genetics 103:771–783PubMedCentralPubMedGoogle Scholar
  114. Vega L, Díaz E, Cross I, Rebordinos L (2002) Caracterizaciones citogenética e isoenzimática del lenguado Solea senegalensis Kaup, 1858. Bol Inst Esp Oceanogr 18(1–4):245–250Google Scholar
  115. Vera M, Álvarez-Dios JA, Millán A, Pardo BG, Bouza C, Hermida M, Fernández C, De la Herrán R, Molina-Luzón MJ, Martínez P (2011) Validation of single nucleotide polymorphism (SNP) markers from an immune expressed sequence tag (EST) turbot, Scophthalmus maximus, database. Aquaculture 313:31–41Google Scholar
  116. Villalta M, Estévez A, Bransden MP (2005) Arachidonic acid enriched live prey induces albinism in Senegal sole (Solea senegalensis) larvae. Aquaculture 245:193–209Google Scholar
  117. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedGoogle Scholar
  118. Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR (2001) A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158:727–734PubMedCentralPubMedGoogle Scholar
  119. Wang CM, Zhu ZY, Lo LC, Feng F, Lin G, Yang WT, Li J, Yue GH (2007) A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics 175:907–915PubMedCentralPubMedGoogle Scholar
  120. Wang CM, Bai ZY, He XP, Lin G, Xia JH, Sun F, Lo LC, Feng F, Zhu ZY, Yue GH (2011) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics 12:174PubMedCentralPubMedGoogle Scholar
  121. Williams CG (1998) QTL mapping in outbreed pedigrees. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 81–95Google Scholar
  122. Zorrilla I, Arijo S, Chabrillon M, Diaz P, Martinez-Manzanares E, Balebona MC, Moriñigo MA (2003) Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J Fish Dis 26:103–108PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ma. Jesús Molina-Luzón
    • 1
  • Miguel Hermida
    • 2
  • Rafael Navajas-Pérez
    • 1
  • Francisca Robles
    • 1
  • José Ignacio Navas
    • 3
  • Carmelo Ruiz-Rejón
    • 1
  • Carmen Bouza
    • 2
  • Paulino Martínez
    • 2
  • Roberto de la Herrán
    • 1
  1. 1.Facultad de Ciencias, Departamento de GenéticaUniversidad de GranadaGranadaSpain
  2. 2.Facultad de Veterinaria, Departamento de GenéticaUniversidad de Santiago de CompostelaLugoSpain
  3. 3.IFAPA, Centro Agua del PinoConsejería de Agricultura y Pesca, Junta de AndalucíaCartaya, HuelvaSpain

Personalised recommendations