Marine Biotechnology

, Volume 16, Issue 6, pp 621–628 | Cite as

Immobilized Growth of the Peridinin-Producing Marine Dinoflagellate Symbiodinium in a Simple Biofilm Photobioreactor

  • Ruben Maximilian Benstein
  • Zehra Çebi
  • Björn Podola
  • Michael Melkonian
Original Article


Products from phototrophic dinoflagellates such as toxins or pigments are potentially important for applications in the biomedical sciences, especially in drug development. However, the technical cultivation of these organisms is often problematic due to their sensitivity to hydrodynamic (shear) stress that is a characteristic of suspension-based closed photobioreactors (PBRs). It is thus often thought that most species of dinoflagellates are non-cultivable at a technical scale. Recent advances in the development of biofilm PBRs that rely on immobilization of microalgae may hold potential to circumvent this major technical problem in dinoflagellate cultivation. In the present study, the dinoflagellate Symbiodinium voratum was grown immobilized on a Twin-Layer PBR for isolation of the carotenoid peridinin, an anti-cancerogenic compound. Biomass productivities ranged from 1.0 to 11.0 g m−2 day−1 dry matter per vertical growth surface and a maximal biomass yield of 114.5 g m−2, depending on light intensity, supplementary CO2, and type of substrate (paper or polycarbonate membrane) used. Compared to a suspension culture, the performance of the Twin-Layer PBRs exhibited significantly higher growth rates and maximal biomass yield. In the Twin-Layer PBR a maximal peridinin productivity of 24 mg m−2 day−1 was determined at a light intensity of 74 μmol m−2 s−1, although the highest peridinin content per dry weight (1.7 % w/w) was attained at lower light intensities. The results demonstrate that a biofilm-based PBR that minimizes hydrodynamic shear forces is applicable to technical-scale cultivation of dinoflagellates and may foster biotechnological applications of these abundant marine protists.


Dinoflagellate Symbiodinium voratum Peridinin Biofilm Photobioreactor Twin-Layer 



The authors thank Dorothee Langenbach for her support in peridinin determinations.


  1. Bandaranayake WM (1997) Mycosporines : are they nature’s sunscreens? Nat Prod Rep 15:159–172CrossRefGoogle Scholar
  2. Barros MP, Pinto E, Colepicolo P, Pedersén M (2001) Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: Scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 288:225–232CrossRefPubMedGoogle Scholar
  3. Boelee NC, Janssen M, Temmink H, Shrestha R, Buisman CJN, Wijffels RH (2014) Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol 172:405–422Google Scholar
  4. Fuentes-Grünewald C, Garcés E, Alacid E, Rossi S, Camp J (2013) Biomass and Lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. Mar Biotechnol 15:37–47CrossRefPubMedGoogle Scholar
  5. Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E (2012a) Bioactives from microalgal dinoflagellates. Biotechnol Adv 30:1673–1684CrossRefPubMedGoogle Scholar
  6. Gallardo-Rodríguez J, García Camacho F, Sanchez-Miron A, Lopez-Rosales L, Chisti Y, Molina-Grima E (2012b) Shear-induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga. Biotechnol Prog 28:467–473CrossRefPubMedGoogle Scholar
  7. García Camacho F, Gallardo Rodríguez J, Sánchez Mirón A, Cerón Garciá MC, Belarbi EH, Molina Grima E (2007a) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks Implications in bioprocess engineering. Process Biochem 42:1506–1515Google Scholar
  8. García Camacho F, Gallardo Rodríguez J, Sánchez Mirón A, Cerón Garciá MC, Belarbi EH, Chisti Y, Molina-Grima E (2007b) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194Google Scholar
  9. García Camacho F, Gallardo Rodríguez J, Sánchez Mirón A, Belarbi EH, Chisti Y, Molina-Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Proc Biochem 46:936–944CrossRefGoogle Scholar
  10. GarcíaCamacho F, Molina Grima E, Sánchez MA, González Pascual V, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzym Microb Technol 29:602–610CrossRefGoogle Scholar
  11. Gibson CH, Thomas WH (1995) Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. J Geophys Res 100:24,841–24,846CrossRefGoogle Scholar
  12. Jeffrey SW (1968) Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae. Biochim Biophys Acta 162:271–285CrossRefPubMedGoogle Scholar
  13. Jeffrey S, Haxo F (1968) Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol Bull 135:149–165CrossRefGoogle Scholar
  14. Jeong HJ, Lee SY, Kang NS, Yoo YD, Lim AS, Lee MJ, Kim HS, Yih W, Yamashita H, LaJeunesse TC (2014) Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium Clade E. J Eukaryot Microbiol 61:75–94CrossRefPubMedGoogle Scholar
  15. Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, Liu T (2014) An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J Appl Phycol 26:173–180CrossRefGoogle Scholar
  16. Johansen J, Svec W, Liaaen-Jensen S, Haxo F (1974) Carotenoids of the Dinophyceae. Phytochemistry 13:2261–2271CrossRefGoogle Scholar
  17. Jovine R, Triplett E, Nelson NB, Prézelin B (1992) Quantification of chromophore pigments, apoproteinbbundance and isoelectric variants of peridinin-chlorophyll a-protein complexes (PCPs) in the dinoflagellate Heterocapsa pygmaea grown under variable light conditions. Plant Cell Physiol 33:733–741Google Scholar
  18. Juhl AR, Latz MI (2002) Mechanisms offluid shear induced inhibition of population growth in a red tide dinofalgellate. J Phycol 38:683–694CrossRefGoogle Scholar
  19. Khalesi MK, Lamers P (2010) Partial quantification of pigments extracted from the zooxanthellateoctocoral Sinularia flexibilis at varying irradiances. Biologia 65:681–687CrossRefGoogle Scholar
  20. Kim SM, Kang S-W, Lee EA, Seo E-K, Song J-I, Pan C-H (2013) Analysis of carotenoids in 25 indigeneous Korean coral extracts. J Appl Biol Chem 56:43–48CrossRefGoogle Scholar
  21. Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222CrossRefPubMedGoogle Scholar
  22. Maoka T, Fujiwara Y, Hashimoto K, Akimoto N (2005) Carotenoids in three species of Corbicula clams, Corbicula japonica, Corbiculasandai, and Corbicula sp. (Chinese freshwater Corbicula clam). J Agric Food Chem 53(8357–83):64Google Scholar
  23. McLachlan J (1973) Growth media—marine. In: Stein JR (ed) Handbook of Phycolgical Methods, Culturing Methods and Growth Measurments. Cambridge University Press, CambridgeGoogle Scholar
  24. Melkonian M, Podola B (2010) Method and device for cultivating eucaryotic organisms or blue algae, and biosensor with cultivated eucaryotic organisms or blue algae. United States Patent US 7,745,201 B2Google Scholar
  25. Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420Google Scholar
  26. Niki H, Hosokawa S, Nagaike K, Tagawa T (2004) A new immunofluorostaining method using red fluorescence of PerCP on formalin-fixed paraffin-embedded tissues. J Immunol Meth 293:143–151CrossRefGoogle Scholar
  27. Nishino H (1998) Cancer prevention by carotenoids. Mutat Res Fundam Mol Mech Mutagen 402:159–163CrossRefGoogle Scholar
  28. Nowack ECM, Podola B, Melkonian M (2005) The 96-well Twin-Layer System: a novel approach in the cultivation of microalgae. Protist 156:239–251CrossRefPubMedGoogle Scholar
  29. Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89:178–195CrossRefGoogle Scholar
  30. Parker N, Negri A, Frampton D (2002) Growth of the toxic dinoflagellate Alexandrium minutum (Dinophyceae) using high biomass culture systems. J Appl Phycol 14:313–324CrossRefGoogle Scholar
  31. Recktenwald D (1989) Peridinin-chlorophyll complex as fluorescent label. United States Patent US 4,876,190Google Scholar
  32. Rogers JE, Marcovich D (2007) A simple method for the extraction and quantification of photopigments from Symbiodinium spp. J Exp Mar Bio Ecol 353:191–197CrossRefGoogle Scholar
  33. Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett 43:5829–5832CrossRefGoogle Scholar
  34. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423CrossRefGoogle Scholar
  35. Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266CrossRefPubMedGoogle Scholar
  36. Sugawara T, Yamashita K, Sakai S, Asai A, Nagao A, Shiraishi T, Imai I, Hirata T (2007) Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci Biotechnol Biochem 71:1069–1072CrossRefPubMedGoogle Scholar
  37. Yoshida T, Maoka T, Das SK, Knanzawa K, Horinaka M, Wakada M, Satomi Y, Nishino H, Sakai T (2007) Halocynthiaxanthin and peridinin sensitize colon cancer cell lines to tumour necrosis factor-related apoptosis-inducing ligand. Mol Cancer Res 5:615–625CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ruben Maximilian Benstein
    • 1
  • Zehra Çebi
    • 1
  • Björn Podola
    • 1
  • Michael Melkonian
    • 1
  1. 1.Botanisches Institut, Biozentrum KölnUniversität zu KölnKölnGermany

Personalised recommendations