Advertisement

Marine Biotechnology

, Volume 15, Issue 4, pp 375–398 | Cite as

Principles of Biofouling Protection in Marine Sponges: A Model for the Design of Novel Biomimetic and Bio-inspired Coatings in the Marine Environment?

  • Werner E. G. Müller
  • Xiaohong Wang
  • Peter Proksch
  • Carole C. Perry
  • Ronald Osinga
  • Johan Gardères
  • Heinz C. Schröder
Invited Review

Abstract

The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future.

Keywords

Biofilm Marine coatings Antifouling strategies Synergism Polyphosphate Copper Bisphosphonate Bioinspired approach 

Notes

Acknowledgments

W.E.G. M. is a holder of an ERC Advanced Investigator Grant (no. 268476 BIOSILICA). This work was supported by grants from the European Commission (project no. PIAPP-GA-2011-286059–CoreShell and project no. PIRSES-GA-2009-246987–MarBioTec*EU-CN*, European-Chinese Research Staff Exchange Cluster on Marine Biotechnology), the European Commission/EUREKA (EUROSTARS, project no. 4289–SILIBACTS), the Public Welfare Project of Ministry of Land and Resources of the People’s Republic of China (grant no. 201011005-06), and the International S&T Cooperation Program of China (grant no. 2008DFA00980). We gratefully acknowledge Prof. Dr. Franz Brümmer (Universität Stuttgart) who allowed us to reproduce image in Fig. 1j in this review.

References

  1. Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312CrossRefGoogle Scholar
  2. Adolph S, Bach S, Blondel M, Cueff A, Moreau M, Pohnert G, Poulet SA, Wichard T, Zuccaro A (2004) Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J Exp Biol 207:2935–2946PubMedCrossRefGoogle Scholar
  3. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82CrossRefGoogle Scholar
  4. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722PubMedCrossRefGoogle Scholar
  5. Almeida E, Diamantino TC, de Sousa O (2007) Marine paints: the particular case of antifouling paints. Prog Org Coat 59:2–20CrossRefGoogle Scholar
  6. Altenberg GA (2004) Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily. Curr Med Chem Anticancer Agents 4:53–62PubMedCrossRefGoogle Scholar
  7. Althoff K, Schütt C, Steffen R, Batel R, Müller WEG (1998) Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively-toxic bacteria? Mar Biol 130:529–536CrossRefGoogle Scholar
  8. Angaranoa MB, McMahona RF, Hawkinsb DL, Schetzac JA (2007) Exploration of structure–antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling 23:295–305CrossRefGoogle Scholar
  9. Austin MB, Noel AJP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110PubMedCrossRefGoogle Scholar
  10. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  11. Batel R, Bihari N, Rinkevich B, Dapper J, Schäcke H, Schröder HC, Müller WEG (1993) Modulation of organotin-induced apoptosis by the water pollutant methyl mercury in a human lymphoblastoid tumor cell line and a marine sponge. Mar Ecol Progr Ser 93:245–251CrossRefGoogle Scholar
  12. Bayer M, Hellio C, Maréchal JP, Frank W, Lin W, Weber H, Proksch P (2011) Antifouling bastadin congeners target mussel phenoloxidase and complex copper(II) ions. Mar Biotechnol 13:1148–1158PubMedCrossRefGoogle Scholar
  13. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186PubMedCrossRefGoogle Scholar
  14. Bihari N, Najdek M, Floris R, Batel R, Zahn RK (1989) Sediment toxicity assessment using bacterial bioluminescence: effect of an unusual phytoplankton bloom. Mar Ecol Prog Ser 57:307–310CrossRefGoogle Scholar
  15. Blumbach B, Pancer Z, Diehl-Seifert B, Steffen R, Münkner J, Müller I, Müller WEG (1998) The putative sponge aggregation receptor: Isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats. J Cell Sci 111:2635–2644PubMedGoogle Scholar
  16. Brady RF (1997) In search of non-stick coatings. Chem Ind (Lond) 6:219–222Google Scholar
  17. Bringmann G, Gulder T, Hentschel U, Meyer F, Moll H, Morschhäuser J, Vanegas PS, Ziebuhr W, Stich A, Brunn R, Müller WEG, Mudogo V (2012) Biofilm-inhibition effect and anti-infective activity of N,C-linked aryl isoquinolines and the use thereof. US Patent 8,173,673, May 8, 2012Google Scholar
  18. Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M (2003) Comparison of anti-predator defenses of Red Sea and Caribbean sponges. I. Chemical defense. Mar Ecol Prog Ser 252:105–114CrossRefGoogle Scholar
  19. Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49:1–5Google Scholar
  20. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2:244PubMedCrossRefGoogle Scholar
  21. Chambers L, Stokes K, Walsh F, Wood R (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652CrossRefGoogle Scholar
  22. Champ MA (2000) A review of organotin regulatory strategies pending actions related costs and benefits. Sci Total Environ 258:21–71PubMedCrossRefGoogle Scholar
  23. Champ MA (2001) The status of the treaty to ban TBT in marine antifouling paints and alternatives. Proceedings of the 24th UJNR (US/Japan) Marine Facilities Panel Meeting, Hawaii, November 7–8, 2001Google Scholar
  24. Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389PubMedCrossRefGoogle Scholar
  25. Chen SC, Yen CH, Yeh MS, Huang CJ, Liu TY (2001) Biochemical properties and cDNA cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2. J Biol Chem 276:9631–9639PubMedCrossRefGoogle Scholar
  26. Chen JD, Yi RZ, Sun CL, Feng DQ, Lin YM (2010) Antifouling activity of simple synthetic diterpenoids against larvae of the barnacle Balanus albicostatus Pilsbry. Molecules 15:8072–8081PubMedCrossRefGoogle Scholar
  27. Chen G, Swem LR, Swem DL, Stauff DL, O'Loughlin CT, Jeffrey PD, Bassler BL, Hughson FM (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209PubMedCrossRefGoogle Scholar
  28. Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to non-toxic antifouling. Invert Reprod Dev 22:67–76CrossRefGoogle Scholar
  29. Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96CrossRefGoogle Scholar
  30. Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46CrossRefGoogle Scholar
  31. Darwin CR (1851) A monograph on the sub-class Cirripedia, with figures of all the species. The Lepadidæ; or, pedunculated cirripedes. The Ray Society, LondonGoogle Scholar
  32. de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. In: Fusetani N, Clare AS (eds) Antifouling compounds. Springer, Berlin, pp 55–86CrossRefGoogle Scholar
  33. Dickey TD (1991) The emergence of concurrent high-resolution physical and bio-optical measurements in the upper ocean and their applications. Rev Geophys 29:383–414CrossRefGoogle Scholar
  34. Diers JA, Pennaka HK, Peng J, Bowling JJ, Duke SO, Hamann MT (2004) Structural activity relationship studies of zebra mussel antifouling and antimicrobial agents from verongid sponges. J Nat Prod 67:2117–2120PubMedCrossRefGoogle Scholar
  35. Du H, Chandaroy P, Hui SW (1997) Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta 1326:236–248PubMedCrossRefGoogle Scholar
  36. Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Ocean 24:715–725CrossRefGoogle Scholar
  37. Ebada SS, Proksch P (2012) The chemistry of marine sponges. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati T (eds) Handbook of marine natural products. Springer Science+Business Media B.V, Dordrecht, pp 191–293CrossRefGoogle Scholar
  38. Edyvean RGJ (1990) The effects of microbiologically generated hydrogen sulfide in marine corrosion. Mar Technol Soc J 24:5–9Google Scholar
  39. Evans SM, Leksono T, McKinnel PD (1995) Tributyltin pollution: a diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar Pollut Bull 30:14–21CrossRefGoogle Scholar
  40. Fattorusso E, Minale L, Sodano G (1970) Aeroplysinin-1, a new bromo-compound from Aplysina aerophoba. J Chem Soc D Chem Commun 12:751–753CrossRefGoogle Scholar
  41. Fattorusso E, Minale L, Sodano G (1972) Aeroplysinin-1, an antibacterial bromo-compound from the sponge Verongia aerophoba. J Chem Soc Perkin Trans 1:16–18CrossRefGoogle Scholar
  42. Fogg GE (1995) Some speculations on the nature of the pelagic mucilage community of the Northern Adriatic Sea. Sci Total Environ 165:59–63CrossRefGoogle Scholar
  43. Fontana A, d'Ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, Miralto A, Ianora A (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818PubMedCrossRefGoogle Scholar
  44. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J, Timpl R (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10:3137–3146PubMedGoogle Scholar
  45. Fulmor W, Van Lear GE, Morton GO, Mills RD (1970) Isolation and absolute configuration of the aeroplysinin I enantiomorphic pair from Ianthella ardis. Tetrahedron Lett 52:4551–4552PubMedCrossRefGoogle Scholar
  46. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedGoogle Scholar
  47. Fuqua WC, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751PubMedCrossRefGoogle Scholar
  48. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104PubMedCrossRefGoogle Scholar
  49. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410PubMedCrossRefGoogle Scholar
  50. Fusetani N, Clare AS (2006) Antifouling compounds. Springer, BerlinGoogle Scholar
  51. Fusetani N, Hiroto H, Okino T, Tomono Y, Yoshumura E (1996) Antifouling activity of isocyanoterpenoids and related compounds isolated from a marine sponge and nudibranchs. J Nat Toxins 5:249–259Google Scholar
  52. Garcia R, Franklin RA, McCubrey JA (2006) EGF induces cell motility and multi-drug resistance gene expression in breast cancer cells. Cell Cycle 5:2820–2826PubMedCrossRefGoogle Scholar
  53. Gardères J, Taupin L, Bin Saïdin J, Dufour A, Le Pennec G (2012) N-acyl homoserine lactone production by bacteria within the sponge Suberites domuncula (Olivi, 1792) (Porifera, Demospongiae). Mar Biol 159:1685–1692CrossRefGoogle Scholar
  54. Gohad NV, Aldred N, Orihuela B, Clare AS, Rittschof D, Mount AS (2012) Observations on the settlement and cementation of barnacle (Balanus amphitrite) cyprid larvae after artificial exposure to noradrenaline and the locations of adrenergic-like receptors. J Exp Mar Biol Ecol 416–417:153–161CrossRefGoogle Scholar
  55. Guilfoile PG, Hutchinson CR (1991) A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 88:8553–8557PubMedCrossRefGoogle Scholar
  56. Hanington PC, Zhang SM (2011) The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 3:17–27PubMedCrossRefGoogle Scholar
  57. Hebel D, Knauer GA, Martin JH (1986) Trace metals in large agglomerates (marine snow). J Plankton Res 8:819–824CrossRefGoogle Scholar
  58. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312PubMedCrossRefGoogle Scholar
  59. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654PubMedCrossRefGoogle Scholar
  60. Herndl GJ (1988) Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. II. Microbial density and activity in marine snow and its implication to overall pelagic processes. Mar Ecol Prog Ser 48:265–275CrossRefGoogle Scholar
  61. Herndl GJ (1992) Marine snow in the Northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Mar Microb Food Webs 6:149–172Google Scholar
  62. Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varian: responses to predators and wave energy. Biol Bull 202:86–95PubMedCrossRefGoogle Scholar
  63. Hinterding K, Knebel A, Herrlich P, Waldmann H (1998) Synthesis and biological evaluation of aeroplysinin analogues: a new class of receptor tyrosine kinase inhibitors. Bioorg Med Chem 6:1153–1162PubMedCrossRefGoogle Scholar
  64. Holliday NP, Yelland MJ, Pascal R, Swail VR, Taylor PK, Griffiths CR, Kent E (2006) Were extreme waves in the Rockall Trough the largest ever recorded? Geophys Res Lett 33(L05613). doi: 10.1029/2005GL025238
  65. Huston MA (1985) Patterns of species diversity on coral reefs. Ann Rev Ecol Syst 16:149–177CrossRefGoogle Scholar
  66. Jackson JBC, Buss L (1975) Allelopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci U S A 72:5160–5163PubMedCrossRefGoogle Scholar
  67. Jain A, Bhosle NB (2009) Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling 25:13–19PubMedCrossRefGoogle Scholar
  68. Jaspars M, Rali T, Laney M, Schatzman RC, Diaz MC, Schmitz FJ, Pordesimo EO, Crews P (1994) The search for inosine 5′-phosphate dehydrogenase (IMPDH) inhibitors from marine sponges. Evaluation of the bastadin alkaloids. Tetrahedron 50:7367–7374CrossRefGoogle Scholar
  69. Jüttner F (2005) Evidence that polyunsaturated aldehydes of diatom are repellents for pelagic crustacean grazers. Aquat Ecol 39:271–282CrossRefGoogle Scholar
  70. Karmali PP, Chao Y, Park JH, Sailor MJ, Ruoslahti E, Esener SC, Simberg D (2012) Different effect of hydrogelation on antifouling and circulation properties of dextran–iron oxide nanoparticles. Mol Pharm 9:539–545PubMedCrossRefGoogle Scholar
  71. Kelman D, Kashman Y, Hill RT, Rosenberg E, Loya Y (2009) Chemical warfare in the sea: The search for antibiotics from Red Sea corals and sponges. Pure Appl Chem 81:1113–1121CrossRefGoogle Scholar
  72. Kempf G (1937) On the effect of roughness on the resistance of ships. Trans INA 79:109–119Google Scholar
  73. Khandeparker L, Anil AC (2007) Underwater adhesive: the barnacle way. Int J Adh Adhes 27:165–172CrossRefGoogle Scholar
  74. Kiaune L, Singhasemanon N (2011) Pesticidal copper(I) oxide: environmental fate and aquatic toxicity. Rev Environ Contam Toxicol 213:1–26PubMedCrossRefGoogle Scholar
  75. Kieboom J, de Bont JAM (2000) Mechanisms of organic solvent resistance in bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. American Society for Microbiology, Washington, DC , pp 393–402Google Scholar
  76. Kilps JR, Logan BE, Alldredge AL (1994) Fractal dimensions of marine snow determined from image analysis of in situ photographs. Deep-Sea Res 41:1159–1169Google Scholar
  77. Kirschner CM, Brennan AB (2012) Bio-inspired antifouling strategies. Annu Rev Mater Res 42:8.1–8.19CrossRefGoogle Scholar
  78. Kornberg A, Rao NN, Ault-Riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125PubMedCrossRefGoogle Scholar
  79. Koulman A, Proksch P, Ebel R, Beekman AC, van Uden W, Konings AW, Pedersen JA, Pras N, Woerdenbag HJ (1996) Cytotoxicity and mode of action of aeroplysinin-1 and a related dienonefrom the sponge Aplysina aerophoba. J Nat Prod 59:591–594PubMedCrossRefGoogle Scholar
  80. Kreuter MH, Bernd A, Holzmann H, Müller-Klieser W, Maidhof A, Weißmann N, Klajic Z, Batel R, Schröder HC, Müller WEG (1989) Cytostatic activity of aeroplysinin-1 against lymphoma and epithelioma cells. Z Naturforsch 44c:680–688Google Scholar
  81. Kreuter MH, Leake RE, Rinaldi F, Müller-Klieser W, Maidhof A, Müller WEG, Schröder HC (1990a) Inhibition of intrinsic protein tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. Comp Biochem Physiol 97B:151–158Google Scholar
  82. Kreuter MH, Robitzki A, Chang S, Steffen R, Michaelis M, Kljajic Z, Bachmann M, Schröder HC, Müller WEG (1990b) Production of the cytostatic agent, aeroplysinin by the sponge Verongia aerophoba in in vitro culture. Comp Biochem Physiol 101C:183–187Google Scholar
  83. Kulaev IS, Vagabov V, Kulakovskaya T (2004) The biochemistry of inorganic polyphosphates. Wiley, New YorkCrossRefGoogle Scholar
  84. Kulakovskaya TV, Vagabov VM, Kulaev IS (2012) Inorganic polyphosphate in industry, agriculture and medicine: modern state and outlook. Proc Biochem 47:1–10CrossRefGoogle Scholar
  85. Kurelec B, Britvic S, Krta S, Müller WEG, Zahn RK (1987) Metabolism of some carcinogenic aromatic amines in four species of marine sponges. Comp Biochem Physiol 86C:17–22Google Scholar
  86. Kurelec B, Krca S, Pivcevic B, Ugarkovic D, Bachmann M, Imsiecke G, Müller WEG (1992) Expression of P-glycoprotein gene in marine sponges. Identification and characterization of the 125-kDa drug-binding glycoprotein. Carcinogenesis 13:69–76PubMedCrossRefGoogle Scholar
  87. Kurelec B, Pivcevic B, Müller WEG (1995) Determination of pollutants with multixenobiotic-resistance inhibiting properties. Mar Env Res 39:261–265CrossRefGoogle Scholar
  88. Laport MS, Santos OC, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105PubMedCrossRefGoogle Scholar
  89. Lavery B (2000) The arming and fitting of English Ships of War 1600–1815. Conway Maritime Press, LondonGoogle Scholar
  90. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132PubMedCrossRefGoogle Scholar
  91. Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805PubMedCrossRefGoogle Scholar
  92. Leflaive J, Ten-Hage L (2011a) Impairment of benthic diatom adhesion and photosynthetic activity by 2E,4E-decadienal. Res Microbiol 162:982–989PubMedCrossRefGoogle Scholar
  93. Leflaive J, Ten-Hage L (2011b) Effects of 2E,4E-decadienal on motility and aggregation of diatoms and on biofilm formation. Microb Ecol 61:363–373PubMedCrossRefGoogle Scholar
  94. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82PubMedCrossRefGoogle Scholar
  95. Li XZ, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159–204PubMedCrossRefGoogle Scholar
  96. Lira NS, Montes RC, Tavares JF, da Silva MS, da Cunha EVL, de Athayde-Filho PF, Rodrigues LC, da Silva DC, Barbosa-Filho JM (2011) Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR spectral data. Mar Drugs 9:2316–2368PubMedCrossRefGoogle Scholar
  97. Lorenz B, Müller WEG, Kulaev IS, Schröder HC (1994) Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204PubMedGoogle Scholar
  98. Lorenz B, Batel R, Bachinski N, Müller WEG, Schröder HC (1995) Purification of two exopolyphosphatases from the marine sponge Tethya lyncurium. Biochim Biophys Acta 1245:17–28PubMedCrossRefGoogle Scholar
  99. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833PubMedCrossRefGoogle Scholar
  100. Maldonado M, Carmona MC, Uriz MJ, Cruzado A (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–788CrossRefGoogle Scholar
  101. Marchetti R (1990) Algal blooms and gel production in the Adriatic Sea. In: Barth H, Fegan L (eds) Eutrophication-related phenomena in the Adriatic Sea and in other Mediterranean coastal zones. Commission of the European Communities, BrusselsGoogle Scholar
  102. Martin M, Showalter R, Silverman M (1989) Identification of a locus controlling expression of luminescence genes in Vibrio harveyi. J Bacteriol 171:2406–2414PubMedGoogle Scholar
  103. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, Navolanic PM, Terrian DM, Franklin RA, D’Assoro AB, Salisbury JL, Mazzarino MC, Stivala F, Libra M (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzym Regul 46:249–279CrossRefGoogle Scholar
  104. Mičić M, Bihari N, Labura Ž, Müller WEG, Batel R (2001) Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride. Aquat Toxicol 55:61–73PubMedCrossRefGoogle Scholar
  105. Milne A, Hails G (1976) Marine paint. Patent GB1457590, International Paint Co. Ltd. 6 Written in NewcastleGoogle Scholar
  106. Molino PJ, Wetherbee R (2008) The biology of biofouling diatoms and their role in the development of microbial slimes (mini-review). Biofouling 24:365–379PubMedCrossRefGoogle Scholar
  107. Morton LHG, Greenway DLA, Gaylarde CC, Surman SB (1998) Consideration of some implications of the resistance of biofilms to biocides. Int Biodeterior Biodegrad 41:247–259CrossRefGoogle Scholar
  108. Müller WEG (2003) Sponges (Porifera). Springer, BerlinCrossRefGoogle Scholar
  109. Müller WEG, Zahn RK, Gasic MJ, Dogovic N, Maidhof A, Becker C, Diehl-Seifert B, Eich E (1985) Avarol, a cytostatically active compound from the marine sponge Dysidea avara. Comp Biochem Physiol 80C:47–52Google Scholar
  110. Müller WEG, Steffen R, Kurelec B, Smodlaka N, Puskaric S, Jagic B, Müller-Niklas G, Queric NV (1998) Chemosensitizers of the multixenobiotic resistance in the amorphous aggregates (marine snow): etiology of mass killing on the benthos in the Northern Adriatic? Environ Toxicol Pharmacol 6:229–238PubMedCrossRefGoogle Scholar
  111. Müller WEG, Blumbach B, Müller IM (1999) Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 68:1215–1227PubMedCrossRefGoogle Scholar
  112. Müller WEG, Brümmer F, Batel R, Müller IM, Schröder HC (2003) Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90:103–120PubMedCrossRefGoogle Scholar
  113. Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of urmetazoa: basis for genetic complexity of metazoa. Int Rev Cytol 235:53–92PubMedCrossRefGoogle Scholar
  114. Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297PubMedCrossRefGoogle Scholar
  115. Müller WEG, Belikov SI, Kaluzhnaya OV, Perović-Ottstadt S, Fattorusso E, Ushijima H, Krasko A, Schröder HC (2006a) Cold stress defense in the freshwater sponge Lubomirskia baicalensis: role of okadaic acid produced by symbiotic dinoflagellates. FEBS J 274:23–36CrossRefGoogle Scholar
  116. Müller WEG, Schröder HC, Wrede P, Kaluzhnaya OV, Belikov SI (2006b) Speciation of sponges in Baikal-Tuva region (an outline). J Zool Syst Evol Res 44:105–117CrossRefGoogle Scholar
  117. Müller WEG, Schloßmacher U, Wang XH, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica–polymerase and silica–esterase). FEBS J 275:362–370PubMedCrossRefGoogle Scholar
  118. Müller WEG, Kasueske M, Wang XH, Schröder HC, Wang Y, Pisignano D, Wiens M (2009) Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cell Mol Life Sci 66:537–552PubMedCrossRefGoogle Scholar
  119. Müller WEG, Wang XH, Guo YW, Schröder HC (2012) Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach. Mar Drugs 10:2369–2387PubMedCrossRefGoogle Scholar
  120. Müller-Niklas G, Schuster S, Kaltenböck E, Herndl GJ (1994) Organic content and bacterial metabolism in amorphous aggregations of the Northern Adriatic Sea. Limnol Oceanogr 39:58–68CrossRefGoogle Scholar
  121. Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Biol Assoc UK 73:689–702CrossRefGoogle Scholar
  122. Nikaido H (1994) Prevention of drug access to bacterial targets: role of permeability barriers and active efflux. Science 264:382–388PubMedCrossRefGoogle Scholar
  123. Ogamino T, Nishiyama S (2003) A new ring-opening access to aeroplysinin-1, a secondary metabolite of Verongia aerophoba. Tetrahedron 59:9419–9423CrossRefGoogle Scholar
  124. Ohe T (1993) Idiopathic verapamil-sensitive sustained left ventricular tachycardia. Clin Cardiol 16:139–141PubMedCrossRefGoogle Scholar
  125. Okano K, Shimizu K, Satuito CG, Fusetani N (1996) Visualisation of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J Exp Biol 199:2131–2137PubMedGoogle Scholar
  126. Orlic M (1987) Oscillations of the inertia period on the Adriatic Sea shelf. Cont Shelf Res 7:577–598CrossRefGoogle Scholar
  127. Ortlepp S, Sjögren M, Dahlström M, Weber H, Ebel R, Edrada R, Thoms C, Schupp P, Bohlin L, Proksch P (2007) Antifouling activity of bromotyrosine derived sponge metabolites and synthetic analogues. Mar Biotechnol 9:776–785PubMedCrossRefGoogle Scholar
  128. Ortlepp S, Pedpradap S, Dobretsov S, Proksch P (2008) Antifouling activity of sponge-derived polybrominated diphenyl ethers and synthetic analogues. Biofouling 24:201–208PubMedCrossRefGoogle Scholar
  129. Osinga R, Tramper J, Wijffels RH (1998) Cultivation of marine sponges for metabolite production: applications for biotechnology? Trends Biotechnol 16:130–134CrossRefGoogle Scholar
  130. Pahler S, Blumbach B, Müller I, Müller WEG (1998) Putative multiadhesive protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR- as well as a complement control protein module. J Exp Zool 282:332–343PubMedCrossRefGoogle Scholar
  131. Pawlik JR, Chanas B, Toonen RJ, Fenical W (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194CrossRefGoogle Scholar
  132. Perovic-Ottstadt S, Adell T, Proksch P, Wiens M, Korzhev M, Gamulin V, Müller IM, Müller WEG (2004) A (1→3)-ß-d-glucan recognition protein from the sponge Suberites domuncula: mediated activation of fibrinogen-like protein and epidermal growth factor gene expression. Eur J Biochem 271:1924–1937PubMedCrossRefGoogle Scholar
  133. Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27:996–1047PubMedCrossRefGoogle Scholar
  134. Plutarch (2009) Essays and miscellanies. The complete works of Plutarch, vol. 3. The Project Gutenberg EBook. http://www.gutenberg.org/files/3052/3052-h/3052-h.htm
  135. Pordesimo EO, Schmitz FJ (1990) New bastadins from the sponge Ianthella basta. J Org Chem 55:4704–4709CrossRefGoogle Scholar
  136. Posedel N, Faganeli J (1991) Nature and sedimentation of suspended particulate matter during density stratification in shallow coastal waters (Gulf of Trieste, Northern Adriatic). Mar Ecol Prog Ser 77:135–145CrossRefGoogle Scholar
  137. Qian PY, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234PubMedCrossRefGoogle Scholar
  138. Quere D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  139. Railkin AI (2004) Marine biofouling colonization processes and defenses. CRC, Boca RatonGoogle Scholar
  140. Reitner J, Schumann-Kindel G, Thiel V (1999) Origin and early fossil record of sponges: a geobiological approach. Mem Queensland Mus 44:515Google Scholar
  141. Rützler K, MacIntyre IG (1978) Siliceous sponge spicules in coral reef sediments. Mar Biol 49:147–159CrossRefGoogle Scholar
  142. Saier MH Jr, Paulsen IT (2001) Phylogeny of multidrug transporters. Semin Cell Dev Biol 12:205–213PubMedCrossRefGoogle Scholar
  143. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847PubMedCrossRefGoogle Scholar
  144. Sarà M, Vacelet J (1973) Ecologie des Démosponges. In: Grassé P (ed) Spongiaires. Traité de Zoologie, vol 3. Masson, Paris, pp 462–576Google Scholar
  145. Schäcke H, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994) Molecular cloning of a receptor tyrosine kinase from the marine sponge Geodia cydonium: a new member of the receptor tyrosine kinase class II family in invertebrates. Mole Membr Biol 11:101–107CrossRefGoogle Scholar
  146. Scheuer PJ (1993) Marine natural products—diversity and biosynthesis. Topics in current chemistry 167. Springer, BerlinCrossRefGoogle Scholar
  147. Schröder HC, Müller WEG (1999) Inorganic polyphosphates: biochemistry, biology, biotechnology. Springer, BerlinGoogle Scholar
  148. Schröder HC, Badria FA, Ayyad SN, Batel R, Wiens M, Hassanein HMA, Kurelec B, Müller WEG (1998) Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ Toxicol Pharmacol 5:119–126PubMedCrossRefGoogle Scholar
  149. Schröder HC, Sudek S, De Caro S, De Rosa S, Perović S, Steffen R, Müller IM, Müller WEG (2002) Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analyses. Mar Biotechnol 4:546–558PubMedCrossRefGoogle Scholar
  150. Schröder HC, Ushijima H, Krasko A, Gamulin V, Schütze J, Müller IM, Müller WEG (2003) Emergence and disappearance of an immune molecule, an antimicrobial lectin, in basal metazoa: the tachylectin family. J Biol Chem 278:32810–32817PubMedCrossRefGoogle Scholar
  151. Schultz MP (2000) Turbulent boundary layers on surfaces covered with filamentous algae. ASME J Fluids Eng 122:357–363CrossRefGoogle Scholar
  152. Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341PubMedCrossRefGoogle Scholar
  153. Schultz MP, Swain GW (2000) The influence of biofilms on skin friction drag. Biofouling 15:129–139PubMedCrossRefGoogle Scholar
  154. Schultz M, Bendick J, Holm E, Hertel W (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98PubMedCrossRefGoogle Scholar
  155. Showalter RE, Martin MO, Silverman MR, Martin MO, Silverman MR, Silverman MR (1990) Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J Bacteriol 172:2946–2954PubMedGoogle Scholar
  156. Shukla S, Chen ZS, Ambudkar SV (2012) Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat 15:70–80PubMedCrossRefGoogle Scholar
  157. Silva-Aciares F, Riquelme C (2008) Inhibition of attachment of some fouling diatoms and settlement of Ulva lactuca zoospores by film-forming bacterium and their extracellular products isolated from biofouled substrata in Northern Chile. Electr J Biotechnol 11:60–70Google Scholar
  158. Silverman HG, Roberto FF (2007) Understanding marine mussel adhesion. Mar Biotechnol 9:661–681PubMedCrossRefGoogle Scholar
  159. Simpson TL (1984) The cell biology of sponges. Springer, New YorkCrossRefGoogle Scholar
  160. Sims JJ, Lin GHY, Wing RM (1974) Marine natural products: elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 39:3487–3490CrossRefGoogle Scholar
  161. Singh AK, Singh P, Mishra S, Shahi VK (2012) Anti-biofouling organic–inorganic hybrid membrane for water treatment. J Mater Chem 22:1834–1844CrossRefGoogle Scholar
  162. Smital T, Kurelec B (1997) The concentrations of inhibitors of multixenobiotic resistance mechanism in natural waters: the direct in vivo demonstration of their effect. Environ Toxicol Chem 10:2164–2170CrossRefGoogle Scholar
  163. Sodani K, Patel A, Kathawala RJ, Chen ZS (2012) Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer 31:58–72PubMedCrossRefGoogle Scholar
  164. Sofia SJ, Premnath VV, Merrill EW (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070PubMedCrossRefGoogle Scholar
  165. Stachowitsch M (1984) Mass mortality in the Gulf of Trieste: the course of community destruction. PSZNI Mar Ecol Prog Ser 5:243–264CrossRefGoogle Scholar
  166. Stevenson R (1996) An introduction to algal ecology in freshwater benthic habitats. In: Stevenson R, Bothwell M, Lowe R (eds) Algal ecology: freshwater benthic ecosystems. Academic, San DiegoGoogle Scholar
  167. Stewart M, Depree C, Thompson KJ (2009) Antifouling sesterterpenes from the New Zealand marine sponge Semitaspongia bactriana. Nat Prod Commun 4:331–336PubMedGoogle Scholar
  168. Swain G (1998) Biofouling control: a critical component of drag reduction. Proceedings of the International Symposium on Seawater Drag Reduction, The Naval Undersea Warfare Center, NewportGoogle Scholar
  169. Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473PubMedCrossRefGoogle Scholar
  170. Teta R, Gurgui M, Helfrich EJN, Künne S, Schneider A, Van Echten-Deckert G, Mangoni A, Piel J (2010) Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum Bacteroidetes. ChemBioChem 18:2506–2512CrossRefGoogle Scholar
  171. Thakur NL, Müller WEG (2004) Biotechnological potential of marine sponges. Curr Sci 86:1506–1512Google Scholar
  172. Thakur NL, Müller WEG (2005) Sponge–bacteria association: a useful model to explore symbiosis in marine invertebrates. Symbiosis 39:109–116Google Scholar
  173. Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Müller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31:77–83CrossRefGoogle Scholar
  174. Thompson JE, Walker RP, Faulkner DJ (1985) Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. Mar Biol 88:11–21CrossRefGoogle Scholar
  175. Thoms C, Schupp PJ (2007) Chemical defense strategies in sponges: a review. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, pp 627–637Google Scholar
  176. Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch-C 59:113–122PubMedGoogle Scholar
  177. Tosti E, Romano G, Buttino I, Cuomo A, Ianora A, Miralto A (2003) Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytes. Mol Reprod Dev 66:72–80PubMedCrossRefGoogle Scholar
  178. Tsoukatou M, Marechal JP, Hellio C, Novakovic I, Tufegdzic S, Sladic D, Gasic MJ, Clare AS, Vagias C, Roussis V (2007) Evaluation of the activity of the sponge metabolites avarol and avarone and their synthetic derivatives against fouling micro- and macroorganisms. Molecules 12:1022–1034PubMedCrossRefGoogle Scholar
  179. Tu KC, Bassler BL (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev 21:221–233PubMedCrossRefGoogle Scholar
  180. Turon X, Galera J, Uriz MJ (1998) Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. J Exp Zool 278:22–36CrossRefGoogle Scholar
  181. Ueno S, Masaomi M, Yuji N, Misako T, Yasushi T, Toshimasa Y, Kato Y (2011) Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution. Ann Clin Microbiol Antimicrob 10:1–7CrossRefGoogle Scholar
  182. Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62:279–299PubMedCrossRefGoogle Scholar
  183. Vacelet J (1975) Étude en microscopie électronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288Google Scholar
  184. Videla HA (1996) Manual of biocorrosion. CRC, Boca RatonGoogle Scholar
  185. Waddell B, Pawlik JR (2000) Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar Ecol Prog Ser 125:125–132CrossRefGoogle Scholar
  186. Wagner P, Furstner R, Barthlott W, Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot 54:1295–1303PubMedCrossRefGoogle Scholar
  187. Wagner-Döbler I, Beil W, Lang S, Meiners M, Laatsch H (2002) Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv Biochem Eng Biotechnol 74:207–238PubMedGoogle Scholar
  188. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  189. Waldmann P, Pivcevic B, Müller WEG, Zahn RK, Kurelec B (1995) Increased genotoxicity of aminoanthracene by modulators of multixenobiotic resistance mechanism: studies with the fresh water clam Corbicula fluminea. Mutat Res 342:113–123PubMedCrossRefGoogle Scholar
  190. Walker G (1981) The adhesion of barnacles. J Adhes 12:51–58CrossRefGoogle Scholar
  191. Walker G, Yule AB (1984) Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. J Mar Biol Assoc 64:679–686CrossRefGoogle Scholar
  192. Wang XH, Schloßmacher U, Schröder HC, Müller WEG (2013) Biologically induced transition of bio-silica sol to mesoscopic gelatinous flocs: a biomimetic approach to a controlled fabrication of bio-silica structures. Soft Matter 9:654–664Google Scholar
  193. Wang G, Yang J (2010) Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure. Surf Coat Technol 204:1186–1192CrossRefGoogle Scholar
  194. Wang XH, Hu S, Gan L, Wiens M, Müller WEG (2010) Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success. Terra Nova 22:1–11CrossRefGoogle Scholar
  195. Wang XH, Schröder HC, Wang K, Kaandorp JA, Müller WEG (2012a) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures. Soft Matter 8:9501–9518CrossRefGoogle Scholar
  196. Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012b) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578Google Scholar
  197. Watermann B, Daehne B, Wiegemann M, Lindeskog M, Sievers S (2003) Performance of biocide-free antifouling paints, vol. III: inspections and new applications of 2002 and 2003 and synoptical evaluation of results (1998–2003). World Wide Fund, Frankfurt, p 96Google Scholar
  198. Watermann BT, Daehne B, Sievers S, Dannenberg R, Overbeke JC, Klijnstra JW, Heemken O (2005) Bioassays and selected chemical analysis of biocide-free antifouling coatings. Chemosphere 60:1530–1541PubMedCrossRefGoogle Scholar
  199. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMedCrossRefGoogle Scholar
  200. Wenner M (2007) Humans carry more bacterial cells than human ones. Issue: November 30, 2007Google Scholar
  201. West EE (1973) The effect of surface preparation and repainting procedures on the frictional resistance of old ships bottom plates as predicted from NSRDC friction plane model 4125. Report 4084 from the Department of the Navy. Navy Ship Research and Development Center, Bethesda, MD 20034, 23 ppGoogle Scholar
  202. Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, Ushijima H, Diehl-Seifert B, Müller IM, Müller WEG (2005) Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway: induction of a perforin-like molecule. J Biol Chem 280:27949–27959PubMedCrossRefGoogle Scholar
  203. Wiens M, Schröder HC, Korzhev M, Wang XH, Batel R, Müller WEG (2011) Inducible ASABF-type antimicrobial peptide from the sponge Suberites domuncula: microbicidal and hemolytic activity in vitro and toxic effect on molluscs in vivo. Mar Drugs 9:1969–1994PubMedCrossRefGoogle Scholar
  204. Wolfrath B, Barthel D (1989) Tissue sloughing in the sponge Halichondria panicea: a fouling organism prevents being fouled. Oecologia 78:357–360CrossRefGoogle Scholar
  205. Woods Hole Oceanographic Institution (1952) The history of the prevention of fouling. In: Marine fouling and its prevention. United States Department of the Navy, Bureau of ShipsGoogle Scholar
  206. Wulff JL (1997) Parrotfish predation on cryptic sponges of Caribbean coral reefs. Mar Biol 129:41–52CrossRefGoogle Scholar
  207. Xiao Z, Ding N, Xiao G, Wang S, Wu Y, Tang L (2012) Reversal of multidrug resistance by gefitinib via RAF1/ERK pathway in pancreatic cancer cell line. Anat Rec 295:2122–2128Google Scholar
  208. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology. Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104CrossRefGoogle Scholar
  209. Zang T, Lee BWK, Cannon LM, Ritter KA, Dai S, Ren D, Wood TK, Zhou ZS (2009) A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 19:6200–6204PubMedCrossRefGoogle Scholar
  210. Zechini B, Versace I (2009) Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov 4:37–50PubMedCrossRefGoogle Scholar
  211. Zhang F, Kang ET, Neoh KG, Wang P, Tan KL (2001) Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 22:1541–1548PubMedCrossRefGoogle Scholar
  212. Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974PubMedCrossRefGoogle Scholar
  213. Zhang H, Pradhan P, Kaur P (2010) The extreme C terminus of the ABC protein DrrA contains unique motifs involved in function and assembly of the DrrAB complex. J Biol Chem 285:38324–3836PubMedCrossRefGoogle Scholar
  214. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98:1507–1512PubMedCrossRefGoogle Scholar
  215. Zhua S, Gao B, Tytgat J (2005) Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cell Mol Life Sci 62:2257–2269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Werner E. G. Müller
    • 1
  • Xiaohong Wang
    • 1
    • 2
  • Peter Proksch
    • 3
  • Carole C. Perry
    • 4
  • Ronald Osinga
    • 5
  • Johan Gardères
    • 1
  • Heinz C. Schröder
    • 1
  1. 1.ERC Advanced Investigator Grant Research Group at Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
  2. 2.National Research Center for Geoanalysis, Chinese Academy of Geological SciencesBeijingChina
  3. 3.Institute for Pharmaceutical Biology and BiotechnologyHeinrich Heine UniversityDüsseldorfGermany
  4. 4.Department of Chemistry and PhysicsNottingham Trent UniversityNottinghamUK
  5. 5.Fish Culture and Fisheries GroupWageningen UniversityWageningenthe Netherlands

Personalised recommendations