Marine Biotechnology

, Volume 15, Issue 3, pp 340–348 | Cite as

Bacterial Classification of Fish-Pathogenic Mycobacterium Species by Multigene Phylogenetic Analyses and MALDI Biotyper Identification System

  • Satoru Kurokawa
  • Jun Kabayama
  • Tsuguaki Fukuyasu
  • Seong Don Hwang
  • Chan-Il Park
  • Seong-Bin Park
  • Carmelo S. del Castillo
  • Jun-ichi Hikima
  • Tae-Sung Jung
  • Hidehiro Kondo
  • Ikuo Hirono
  • Haruko Takeyama
  • Takashi Aoki
Original Article

Abstract

Mycobacterium marinum is difficult to distinguish from other species of Mycobacterium isolated from fish using biochemical methods. Here, we used genetic and proteomic analyses to distinguish three Mycobacterium strains: M. marinum strains MB2 and Europe were isolated from tropical and marine fish in Thailand and Europe, and Mycobacterium sp. 012931 strain was isolated from yellowtail in Japan. In phylogenetic trees based on gyrB, rpoB, and Ag85B genes, Mycobacterium sp. 012931 clustered with M. marinum strains MB2 and Europe, but in trees based on 16S rRNA, hsp65, and Ag85A genes Mycobacterium sp. 012931 did not cluster with the other strains. In proteomic analyses using a Bruker matrix-assisted laser desorption ionization Biotyper, the mass profile of Mycobacterium sp. 012931 differed from the mass profiles of the other two fish M. marinum strains. Therefore, Mycobacterium sp. 012931 is similar to M. marinum but is not the same, suggesting that it could be a subspecies of M. marinum.

Keywords

Mycobacterium marinum Mycobacterium sp. Phylogenetic analysis MALDI Biotyper 

Notes

Acknowledgments

This work was partially supported by a grant from the World Class University Program (R32-10253) funded by the Ministry of Education, Science and Technology, South Korea.

References

  1. Arjomandzadegan M, Owlia P, Ranjbar R, Farazi AA, Sofian M, Sadrnia M, Surkova LK, Titov LP (2011) Rapid and simple approach for identification of Mycobacterium tuberculosis and M. bovis by detection of regulatory gene whiB7. Acta Microbiol Immunol Hung 58:65–74PubMedCrossRefGoogle Scholar
  2. Backman S, Ferguson HW, Prescott JF, Wilcock BP (1990) Progressive panophthalmitis in chinook salmon, Oncorhynchus tshawytscha (Walbaum): a case report. J Fish Dis 13:345–353CrossRefGoogle Scholar
  3. Bessede E, Solecki O, Sifre E, Labadi L, Megraud F (2011) Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect 17:1735–1739PubMedCrossRefGoogle Scholar
  4. Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuil L, Berche P, Nassif X, Ferroni A (2012) MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin Microbiol Infect 18:1117–1125Google Scholar
  5. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554PubMedCrossRefGoogle Scholar
  6. Blackwood KS, He C, Gunton J, Turenne CY, Wolfe J, Kabani AM (2000) Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol 38:2846–2852PubMedGoogle Scholar
  7. Bottger EC (1991) Systematics, differentiation, and detection of bacterial infections—the family Mycobacteriaceae. Immun infekt 19:143–152PubMedGoogle Scholar
  8. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63PubMedCrossRefGoogle Scholar
  9. Brunello F, Ligozzi M, Cristelli E, Bonora S, Tortoli E, Fontana R (2001) Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 39:2799–2806PubMedCrossRefGoogle Scholar
  10. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175PubMedCrossRefGoogle Scholar
  11. Cloud JL, Neal H, Rosenberry R, Turenne CY, Jama M, Hillyard DR, Carroll KC (2002) Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol 40:400–406PubMedCrossRefGoogle Scholar
  12. Devulder G, Perouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55:293–302PubMedCrossRefGoogle Scholar
  13. Eigner U, Holfelder M, Oberdorfer K, Betz-Wild U, Bertsch D, Fahr AM (2009) Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin Lab 55:289–296PubMedGoogle Scholar
  14. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One 6:e24720PubMedCrossRefGoogle Scholar
  15. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, Bougnoux ME, Alanio A, Berche P, Nassif X (2010) Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:1542–1548PubMedCrossRefGoogle Scholar
  16. Gauthier DT, Helenthal AM, Rhodes MW, Vogelbein WK, Kator HI (2011) Characterization of photochromogenic Mycobacterium spp. from Chesapeake Bay striped bass Morone saxatilis. Dis Aquat Organ 195:113–124CrossRefGoogle Scholar
  17. Ghittino C, Latini M, Agnetti F, Panzieri C, Lauro L, Ciappelloni R, Petracca G (2003) Emerging pathologies in aquaculture: effects on production and food safety. Vet Res Commun 27:471–479PubMedCrossRefGoogle Scholar
  18. Gingeras TR, Ghandour G, Wang E, Berno A, Small PM, Drobniewski F, Alland D, Desmond E, Holodniy M, Drenkow J (1998) Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 8:435–448PubMedGoogle Scholar
  19. Hedrick RP, McDowell T, Groff J (1987) Mycobacteriosis in cultured striped bass from California. J Wildlife Dis 23:391–395Google Scholar
  20. Kasai H, Ezaki T, Harayama S (2000) Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J Clin Microbiol 38:301–308PubMedGoogle Scholar
  21. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, Kim EC, Cha CY, Kook YH (1999) Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 37:1714–1720PubMedGoogle Scholar
  22. Kirschner P, Bottger EC (1998) Species identification of mycobacteria using rDNA sequencing. Meth Mol Biol 101:349–361Google Scholar
  23. Knibb W, Colorni A, Ankaoua M, Lindell D, Diamant A, Gordin H (1993) Detection and identification of a pathogenic marine Mycobacterium from the European seabass Dicentrarchus labrax using polymerase chain reaction and direct sequencing of 16S rDNA sequences. Mol Mar Biol Biotechnol 2:225–232PubMedGoogle Scholar
  24. Kolbert CP, Persing DH (1999) Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305PubMedCrossRefGoogle Scholar
  25. Kusuda R, Inoue M, Sugiura H, Kawai K (1993) Characteristics of a pathogenic mycobacterium sp. isolated from cultured striped jack, Pseudocaranx dentex. Aquac Sci 41:125–131Google Scholar
  26. Kusuda R, Kawakami K, Kawai K (1987) A fish-pathogenic Mycobacterium sp. isolated from an epizootic of cultured yellowtail. Nippon Suisan Gakk 53:1797–1804 (in Japanese)CrossRefGoogle Scholar
  27. La Scola B, Raoult D (2009) Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One 4:e8041PubMedCrossRefGoogle Scholar
  28. Lewis S, Chinabut S (2011) Mycobacteriosis and nocardiosis. In: Woo PTK, Bruno DW, editors. Fish disease and disorders. 2nd edn. Cambridge, MA: CABI Pub-UK, Wallingford, p. 397–423Google Scholar
  29. Liu J, Rosenberg EY, Nikaido H (1995) Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci USA 92:11254–11258PubMedCrossRefGoogle Scholar
  30. Lotz A, Ferroni A, Beretti JL, Dauphin B, Carbonnelle E, Guet-Revillet H, Veziris N, Heym B, Jarlier V, Gaillard JL, Pierre-Audigier C, Frapy E, Berche P, Nassif X, Bille E (2010) Rapid identification of mycobacterial whole cells in solid and liquid culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:4481–4486PubMedCrossRefGoogle Scholar
  31. Marvin LF, Roberts MA, Fay LB (2003) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 337:11–21PubMedCrossRefGoogle Scholar
  32. Nguyen L, Thompson CJ (2006) Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Microbiol 14:304–312PubMedCrossRefGoogle Scholar
  33. Noga E (1996) Fish Disease. Mosby-Year Book, Inc, St. LouisGoogle Scholar
  34. Pai S, Esen N, Pan X, Musser JM (1997) Routine rapid Mycobacterium species assignment based on species-specific allelic variation in the 65-kilodalton heat shock protein gene (hsp65). Arch Pathol Lab Med 121:859–864PubMedGoogle Scholar
  35. Ringuet H, Akoua-Koffi C, Honore S, Varnerot A, Vincent V, Berche P, Gaillard JL, Pierre-Audigier C (1999) Hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37:852–857PubMedGoogle Scholar
  36. Rogall T, Flohr T, Bottger EC (1990) Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol 136:1915–1920PubMedGoogle Scholar
  37. Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H (1998) Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 36:139–147PubMedGoogle Scholar
  38. Saleeb PG, Drake SK, Murray PR, Zelazny AM (2011) Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1790–1794PubMedCrossRefGoogle Scholar
  39. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82PubMedCrossRefGoogle Scholar
  40. Schmidt V, Jarosch A, Marz P, Sander C, Vacata V, Kalka-Moll W (2012) Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:311–317PubMedCrossRefGoogle Scholar
  41. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551PubMedCrossRefGoogle Scholar
  42. Shitikov E, Ilina E, Chernousova L, Borovskaya A, Rukin I, Afanas’ev M, Smirnova T, Vorobyeva A, Larionova E, Andreevskaya S, Kostrzewa M, Govorun V (2011) Mass spectrometry based methods for the discrimination and typing of mycobacteria. Infect Genet Evol 12:838–845PubMedCrossRefGoogle Scholar
  43. Sogawa K, Watanabe M, Sato K, Segawa S, Ishii C, Miyabe A, Murata S, Saito T, Nomura F (2011) Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem 400:1905–1911PubMedCrossRefGoogle Scholar
  44. Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC (1996) Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 34:296–303PubMedGoogle Scholar
  45. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedCrossRefGoogle Scholar
  46. Stevenson LG, Drake SK, Murray PR (2010a) Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:444–447PubMedCrossRefGoogle Scholar
  47. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR (2010b) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486PubMedCrossRefGoogle Scholar
  48. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  49. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178PubMedGoogle Scholar
  50. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907PubMedCrossRefGoogle Scholar
  51. Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, Glupczynski Y (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol 48:4015–4021PubMedCrossRefGoogle Scholar
  52. Zolg JW, Philippi-Schulz S (1994) The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J Clin Microbiol 32:2801–2812PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Satoru Kurokawa
    • 1
  • Jun Kabayama
    • 1
  • Tsuguaki Fukuyasu
    • 1
  • Seong Don Hwang
    • 2
  • Chan-Il Park
    • 2
  • Seong-Bin Park
    • 3
  • Carmelo S. del Castillo
    • 3
  • Jun-ichi Hikima
    • 3
  • Tae-Sung Jung
    • 3
  • Hidehiro Kondo
    • 4
  • Ikuo Hirono
    • 4
  • Haruko Takeyama
    • 5
  • Takashi Aoki
    • 3
    • 6
  1. 1.Animal Health Department of Research and Development Agricultural and Veterinary DivisionMeiji Seika PharmaTokyoJapan
  2. 2.Institute of Marine Industry, Department of Marine Biology and Aquaculture, College of Marine ScienceGyeongsang National UniversityTongyeongSouth Korea
  3. 3.Aquatic Biotechnology Center of WCU Project, College of Veterinary MedicineGyeongsang National UniversityJinjuSouth Korea
  4. 4.Laboratory of Genome ScienceTokyo University of Marine Science and TechnologyTokyoJapan
  5. 5.Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
  6. 6.Consolidated Research Institute for Advanced Science and Medical CareWaseda UniversityTokyoJapan

Personalised recommendations