Marine Biotechnology

, Volume 15, Issue 3, pp 357–367

Primmorphs Cryopreservation: A New Method for Long-Time Storage of Sponge Cells

  • Francesca Mussino
  • Marina Pozzolini
  • Laura Valisano
  • Carlo Cerrano
  • Umberto Benatti
  • Marco Giovine
Original Article

Abstract

The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.

Keywords

Porifera Cryopreservation Primmorphs 

References

  1. Bischof JC, Padanilam WH, Ezzell RM, Lee RC, Tompkins RG, Yarmush ML, Toner R (1995) Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys J 68:2608–2614PubMedCrossRefGoogle Scholar
  2. Bradford MA (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  3. Carvahlo de Souza A, Ganchev DN, Snel MM, van der Eerden JP, Vlieqenthart JF, Kamerling JP (2009) Adhesion forces in the self-recognition of oligosaccaride epitopes of the proteoglycan aggregation factor of the Marine sponge Microciona prolifera. Glycoconj J 26:457–465CrossRefGoogle Scholar
  4. Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà A, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398CrossRefGoogle Scholar
  5. Chernogor LI, Denikina NN, Belikov SI, Ereskovsky AV (2011) Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis. Mar Biotechnol 13(4):782–792PubMedCrossRefGoogle Scholar
  6. Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brummer F, Nickel M, Müller WEG (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105:45–59PubMedCrossRefGoogle Scholar
  7. de Caralt S, Uriz MJ, Wijffels RH (2007) Cell culture from sponges: pluripotency and immortality. Trends Biotchnol 25:467–471CrossRefGoogle Scholar
  8. Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679PubMedCrossRefGoogle Scholar
  9. Freshney RI (1994) Culture of animal cells: a manual of basic techniques, 5th edn. New York, WileyGoogle Scholar
  10. Gomot L (1971) The organotypic culture of invertebrates other than insects. In: Vago C (ed) Invertebrate tissue culture. Academic, New York, pp 41–136Google Scholar
  11. Grasela JJ, Pomponi SA, Rinkevich B, Grima J (2012) Efforts to develop a cultured sponge cell line: revisiting an intractable problem. In Vitro Cell Dev Biol Anim 48(1):12–20PubMedCrossRefGoogle Scholar
  12. Green AE, Athreya B, Lehr HB, Coriell LL (1967) Viability of cell cultures following extended preservation in liquid nitrogen. Proc Soc Exp Biol Med 124:1302–1307Google Scholar
  13. Hink WF (1979) Cell lines from invertebrates. In: Jakoby WB, Pastan IN (eds) Methods in enzimology; cell culture. Academic, New York, pp 450–466CrossRefGoogle Scholar
  14. Jarchow J, Burger MM (1998) Species-specific association of the cell-aggregation molecule mediates recognition in marine sponges. Cell Adhes Commun 6:405–414PubMedCrossRefGoogle Scholar
  15. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of humantelomerase activity with immortal cells and cancer. Science 266:2011–2015PubMedCrossRefGoogle Scholar
  16. Koziol C, Borojevic R, Steffen R, Müller WEG (1998) Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Ageing Dev 100(2):107–120PubMedCrossRefGoogle Scholar
  17. Kuhns WJ, Weinbaum G, Turner R, Burger MM (1974) Sponge aggregation a model for studies on cell–cell interactions. Ann N Y Acad Sci 234:58–74PubMedCrossRefGoogle Scholar
  18. Le Pennec G, Perovic S, Ammar MS, Grebenjuk VA, Steffen R, Brummer F, Müller WEG (2003) Cultivation of primmorphs from the marine sponges Suberites domuncula: morphogenetic potential of silicon and iron. J Biotechnol 100(2):93–108PubMedCrossRefGoogle Scholar
  19. Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Meth 172(2):227–239CrossRefGoogle Scholar
  20. McMahon P (2000) System for the cell culture and cryopreservation of marine vertebrates US patent n 6,054,317Google Scholar
  21. Miki W, Kon-ya K, Mizobuchi S (1996) Biofouling and marine biotechnology: new antifoulants from marine invertebrates. J Mar Biotechnol 4:117–120Google Scholar
  22. Mitsuhashi J (1989) Nutritional requirements of insect cells in vitro. In: Mitsuhashi J (ed) Invertebrates cell system applications. Vol. I. CRC Press, Florida, pp 3–20Google Scholar
  23. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol 65(1–2):55–63Google Scholar
  24. Müller WEG, Müller IM (2003) Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan. Prog Mol Subcell Biol 37:1–33PubMedCrossRefGoogle Scholar
  25. Müller WEG, Zahn RK, Gasic MJ, Dogovic N, Maidhof A, Becker C, Diehl-Seifert B, Eich E (1985) Avarol, a cytostatically active compound from the marine sponge Dysidea avara. Comp Biochem Physiol 80:46–52Google Scholar
  26. Müller WEG, Wiens M, Batel R, Steffen R, Borojevic R, Custodio MR (1999) Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar Ecol Prog Ser 178:205–219CrossRefGoogle Scholar
  27. Müller WEG, Bohm M, Batel R, De Rosa S, Tommonaro G, Müller IM, Schöder HC (2000) Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J Nat Prod 63(8):1077–1081PubMedCrossRefGoogle Scholar
  28. Müller WEG, Belikov SI, Tremel W, Perry C, Gieskes WC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120PubMedCrossRefGoogle Scholar
  29. Munro MHG, Blunt JW, Lake RJ, Litaudon M, Battershill CN, Page MJ (1994) From seabed to sickbed: what are the prospects? In: Van Soest RWM, Van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema, Rotterdam, pp 473–484Google Scholar
  30. Natalio F, Mugnaioli E, Wiens M, Wang X, Schröder HC, Tahir MN, Tremel W, Kolb U, Müller WEG (2010) Silicatein-mediated incorporation of titanium into spicules from the demosponge Suberites domuncola. Cell Tissue Res 339:429–436PubMedCrossRefGoogle Scholar
  31. Osinga R, Tramper J, Wijffels RH (1988) Cultivation of marine sponges for metabolic production: application for biotechnology? Trends Biotechnol 16:130–135CrossRefGoogle Scholar
  32. Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1(6):509–532PubMedCrossRefGoogle Scholar
  33. Peláez J, Bongalhardo DC, Long JA (2011) Characterizing the glycocalyx of poultry spermatozoa: III Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poult Sci 90:435–443PubMedCrossRefGoogle Scholar
  34. Perry CC (1989) Chemical studies of biogenic silica. In: Mann S, Webb J, Williams RJP (eds) Biomineralization, chemical and biological perspectives. Wiley, Weinheim, pp 223–256Google Scholar
  35. Pomponi SA, Willoughby R, Edward Kaighn M, Wright AE (1997) Development of techniques for in vitro production of bioactive natural products from marine sponges. In: Maramorosch K, Mitsuhashi J (eds) Novel directions and biotechnology applications. Science, New York, pp 231–237Google Scholar
  36. Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi AM, Raheli F, Benatti U, Mueller WE, Giovine M (2004) Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol 6(6):594–603PubMedCrossRefGoogle Scholar
  37. Pozzolini M, Valisano L, Cerrano C, Menta M, Schiaparelli S, Bavestrello G, Benatti U, Giovine M (2010) Influence of rocky substrata on three-dimensional sponge cells model development. In Vitro Cell Dev Biol Anim 46:140–147PubMedCrossRefGoogle Scholar
  38. Rannou M (1971) Cell culture of invertebrates other than molluscs and arthropods. In: Vago C (ed). Invertebrate tissue culture. New York: Academic Press vol 1, pp 385–410Google Scholar
  39. Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153CrossRefGoogle Scholar
  40. Rinkevich B, Blisko R, Ilan M (1998) Further steps in the initiation of cell cultures from embryo and adult sponge colonies. In Vitro Cell Dev Biol 34:753–756CrossRefGoogle Scholar
  41. Rottmann M, Schröder HC, Gramzow M, Renneisen K, Kurelec B, Dorn A, Friese U, Müller WEG (1987) Specific phosphorylation of proteins in pore complex-laminae from the sponge Geodia cydonium by the homologous aggregation factor and phorbol ester. Role of protein kinase C in the phosphorylation of DNA topoisomerase II. EMBO J 6:3939–3944PubMedGoogle Scholar
  42. Rozas EE, Albano RM, Lôbo-Hajdu G, Müller WEG, Schröder HC, Custódio MR (2011) Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida). Braz J Microbiol 42:1560–1568CrossRefGoogle Scholar
  43. Sarà M, Bavestrello G, Cattaneo-Vietti R, Cerrano C (1998) Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis 25:57–70Google Scholar
  44. Saxena AK, Ramachandrani S, Dwivedi A, Sharma R, Bajpai VK, Bhardwaj KR, Balapure AK (1995) Simplified cryopreservation of mammalian cell lines. In vitro Cell Dev Biol 31 A:326–329CrossRefGoogle Scholar
  45. Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH (2012) Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. Adv Mar Biol 62:273–337PubMedCrossRefGoogle Scholar
  46. Seibert G, Raether W, Dogovic N, Gasic MJ, Zahn RK, Müller WEG (1985) Antibacterial andntifungal activity of avarone and avarol. Zbl Bakt Hyg A 260:379–386Google Scholar
  47. Selvin J (2009) Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr Microbiol 58(5):459–463PubMedCrossRefGoogle Scholar
  48. Shröder HC, Brandt D, Schloßmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Muller WEG (2007) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359CrossRefGoogle Scholar
  49. Sipkema D, van Wielink R, van Lammeren AAM, Tramper J, Osinga R, Wijffels RH (2003) Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100(2):127–139PubMedCrossRefGoogle Scholar
  50. Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH (2005a) Marine sponges as a pharmacy. Mar Biotechnol 7:142–162PubMedCrossRefGoogle Scholar
  51. Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005b) Large-scale production of pharmaceuticals by marine sponges: sea, cell or synthesis? Biotechnol Bioeng 90:202–222CrossRefGoogle Scholar
  52. Valisano L, Bavestrello G, Giovine M, Cerrano C (2006a) Primmorphs formation dynamics: a screening among Mediterranean sponges. Mar Biol 149(5):1037–1046CrossRefGoogle Scholar
  53. Valisano L, Bavestrello G, Giovine M, Arillo A, Cerrano C (2006b) Seasonal production of primmorphs from the marine sponge Petrosia ficiformis (Poiret, 1789) and new culturing approaches. J Exp Mar Biol Ecol 337:171–177CrossRefGoogle Scholar
  54. Valisano L, Bavestrello G, Giovine M, Arillo A, Cerrano C (2007) Effect of iron and dissolved silica on primmorphs of Petrosia ficiformis (Poiret, 1789). Chem Ecol 23:233–241CrossRefGoogle Scholar
  55. Valisano L, Pozzolini M, Cerrano C, Giovine M (2012) Biosilica deposition in the marine sponge Petrosia ficiformis (Poiret 1987): the model of primmorph reveals time dependence of spiculogenesis. Hydrobiologia 687(1):259–273CrossRefGoogle Scholar
  56. Vilanova E, Coutinho C, Maia G, Mourão PAS (2010) Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates. Cell Tissue Res 340:523–531PubMedCrossRefGoogle Scholar
  57. Wang X, Schröder HC, Brandt D, Wiens M, Lieberwirth I, Glasser G, Schloßmacher U, Wang S, Müller WEG (2011) Sponge biosilica formation involves syneresis following polycondensation in vivo. Chem Biol Chem 12(15):2316–2324CrossRefGoogle Scholar
  58. Zhang X, Cao X, Zhang W, Yu X, Jin M (2003a) Primmorphs from Archaeocytes-dominant cell population of the sponge Hymeniacidon perleve: improved cell proliferation and spiculogenesis. Biotechnol Bioeng 84(5):583–590PubMedCrossRefGoogle Scholar
  59. Zhang W, Zhang X, Cao X, Xu J, Zhao Q, Yu X, Jin M, Deng M (2003b) Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). J Biotechnol 100(2):161–168PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Francesca Mussino
    • 1
  • Marina Pozzolini
    • 2
  • Laura Valisano
    • 2
  • Carlo Cerrano
    • 3
  • Umberto Benatti
    • 1
    • 4
  • Marco Giovine
    • 2
    • 4
    • 5
  1. 1.DIMESUniversity of GenoaGenoaItaly
  2. 2.DISTAVUniversity of GenovaGenoaItaly
  3. 3.DISVAUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Center of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly
  5. 5.Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV)Università degli Studi di GenovaGenoaItaly

Personalised recommendations