Marine Biotechnology

, Volume 15, Issue 2, pp 230–243 | Cite as

Analysis of a deep transcriptome from the mantle tissue of Patella vulgata Linnaeus (Mollusca: Gastropoda: Patellidae) reveals candidate biomineralising genes

  • Gijsbert D. A. Werner
  • Patrick Gemmell
  • Stefanie Grosser
  • Rebecca Hamer
  • Sebastian M. ShimeldEmail author
Original Article


The gastropod Patella vulgata is abundant on rocky shores in Northern Europe and a significant grazer of intertidal algae. Here we report the application of Illumina sequencing to develop a transcriptome from the adult mantle tissue of P. vulgata. We obtained 47,237,104 paired-end reads of 51 bp, trialled de novo assembly methods and settled on the additive multiple K method followed by redundancy removal as resulting in the most comprehensive assembly. This yielded 29,489 contigs of at least 500 bp in length. We then used three methods to search for candidate genes relevant to biomineralisation: searches via BLAST and Hidden Markov Models for homologues of biomineralising genes from other molluscs, searches for predicted proteins containing tandem repeats and searches for secreted proteins that lacked a transmembrane domain. From the results of these searches we selected 15 contigs for verification by RT-PCR, of which 14 were successfully amplified and cloned. These included homologues of Pif-177/BSMP, Perlustrin, SPARC, AP24, Follistatin-like and Carbonic anhydrase, as well as three containing extensive G-X-Y repeats as found in nacrein. We selected two for further verification by in situ hybridisation, demonstrating expression in the larval shell field. We conclude that de novo assembly of Illumina data offers a cheap and rapid route to a predicted transcriptome that can be used as a resource for further biological study.


Limpet Patella Transcriptome Biomineralisation Shell 



We thank The Elizabeth Hannah Jenkinson fund for financial support for the sequencing, and the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics in Oxford for conducting the Illumina GAII sequencing. We also thank Dr. Paul Naylor for Fig. 1a, and Dr. Helen Thompson for Fig. 9a. SG was supported by the EU Lifelong Learning Programme. GDAW was supported by the Huygens Scholarship Programme. PG was supported by an EPSRC studentship.

Supplementary material

10126_2012_9481_MOESM1_ESM.doc (428 kb)
ESM 1 (DOC 428 kb)
10126_2012_9481_MOESM2_ESM.docx (49 kb)
ESM 2 (DOCX 49 kb)


  1. Bendtsen JD, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–95PubMedCrossRefGoogle Scholar
  2. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3:239–46PubMedCrossRefGoogle Scholar
  3. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–20PubMedCrossRefGoogle Scholar
  4. Clark MS, Thorne MA, Vieira FA, Cardoso JC, Power DM, Peck LS (2010) Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics 11:362PubMedCrossRefGoogle Scholar
  5. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–6PubMedCrossRefGoogle Scholar
  6. Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3:227–38PubMedCrossRefGoogle Scholar
  7. Donachy JE, Drake B, Sikes CS (1992) Sequence and atomic-force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica. Mar Biol 114:423–428CrossRefGoogle Scholar
  8. Emanuelsson O, Brunak S, Von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–71PubMedCrossRefGoogle Scholar
  9. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–16PubMedCrossRefGoogle Scholar
  10. Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6:e21860PubMedCrossRefGoogle Scholar
  11. Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M (2011) Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics 12:317PubMedCrossRefGoogle Scholar
  12. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–37PubMedCrossRefGoogle Scholar
  13. Freeman JA, Wilbur KM (1948) Carbonic anhydrase in molluscs. Biol Bull 94:55–9PubMedCrossRefGoogle Scholar
  14. Fuchigami T, Sasaki T (2005) The shell structure of the recent Patellogastropoda (Mollusca: Gastropda). Palaeontological Research 9:143–168CrossRefGoogle Scholar
  15. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:e131PubMedCrossRefGoogle Scholar
  16. Heyland A, Vue Z, Voolstra CR, Medina M, Moroz LL (2011) Developmental transcriptome of Aplysia californica. J Exp Zool B Mol Dev Evol 316B:113–34PubMedCrossRefGoogle Scholar
  17. Hodgson AN, Le Quesne WJF, Hawkins SJ, Bishop JDD (2007) Factors affecting fertilization success in two species of patellid limpet (Mollusca: Gastropoda) and development of fertilization kinetics models. Mar Biol 150:415–426CrossRefGoogle Scholar
  18. Iijima M, Takeuchi T, Sarashina I, Endo K (2008) Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Dev Genes Evol 218:237–51PubMedCrossRefGoogle Scholar
  19. Jackson DJ, Mcdougall C, Green K, Simpson F, Worheide G, Degnan BM (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40PubMedCrossRefGoogle Scholar
  20. Jackson DJ, Mcdougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608PubMedCrossRefGoogle Scholar
  21. Jackson DJ, Worheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160PubMedCrossRefGoogle Scholar
  22. Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cleon I, Cochennec-Laureau N, Gueguen Y, Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11:613PubMedCrossRefGoogle Scholar
  23. Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–53PubMedCrossRefGoogle Scholar
  24. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–98PubMedCrossRefGoogle Scholar
  25. Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–66PubMedCrossRefGoogle Scholar
  26. Kleypas J, Feely R, Fabry V, Langdon C, Sabine C, Robbins L (2006) Imapcts of ocean acidification on coral reefs and other marine calcifiers. Report of the workshop sponsored by NSF, NOAA and USGSGoogle Scholar
  27. Kniprath E (1981) Ontogeny of the molluscan shell field—a review. Zoologica Scripta 10:61–79CrossRefGoogle Scholar
  28. Koop D, Richards GS, Wanninger A, Gunter HM, Degnan BM (2007) The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev Biol 311:200–12PubMedCrossRefGoogle Scholar
  29. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–4PubMedCrossRefGoogle Scholar
  30. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–9PubMedCrossRefGoogle Scholar
  31. Marie B, Marie A, Jackson DJ, Dubost L, Degnan BM, Milet C, Marin F (2010) Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8:54PubMedCrossRefGoogle Scholar
  32. Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–908PubMedCrossRefGoogle Scholar
  33. Marin F, Luquet G (2004) Molluscan shell proteins. CR Palevol 3:469–492CrossRefGoogle Scholar
  34. Marxen JC, Nimtz M, Becker W, Mann K (2003) The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 1650:92–8PubMedCrossRefGoogle Scholar
  35. Michenfelder M, Fu G, Lawrence C, Weaver JC, Wustman BA, Taranto L, Evans JS, Morse DE (2003) Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers 70:522–33PubMedCrossRefGoogle Scholar
  36. Milan M, Coppe A, Reinhardt R, Cancela LM, Leite RB, Saavedra C, Ciofi C, Chelazzi G, Patarnello T, Bortoluzzi S, Bargelloni L (2011) Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring. BMC Genomics 12:234PubMedCrossRefGoogle Scholar
  37. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–60PubMedCrossRefGoogle Scholar
  38. Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zoolog Sci 22:311–5PubMedCrossRefGoogle Scholar
  39. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–5PubMedCrossRefGoogle Scholar
  40. Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Liu L, Jezzini S, Lovell P, Iannucculli W, Chen M, Nguyen T, Sheng H, Shaw R, Kalachikov S, Panchin YV, Farmerie W, Russo JJ, Ju J, Kandel ER (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127:1453–67PubMedCrossRefGoogle Scholar
  41. Nederbragt AJ, Van Loon AE, Dictus WJ (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–55PubMedCrossRefGoogle Scholar
  42. Newman AM, Cooper JB (2007) XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinforma 8:382CrossRefGoogle Scholar
  43. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–6PubMedCrossRefGoogle Scholar
  44. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–2PubMedCrossRefGoogle Scholar
  45. Ren J, Wen LP, Gao XJ, Jin CJ, Xue Y, Yao XB (2009) DOG 1.0: illustrator of protein domain structures. Cell Research 19:271–273PubMedCrossRefGoogle Scholar
  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–4PubMedCrossRefGoogle Scholar
  47. Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. Thomson learning Inc., BelmontGoogle Scholar
  48. Sarashina I, Yamaguchi H, Haga T, Iijima M, Chiba S, Endo K (2006) Molecular evolution and functionally important structures of molluscan Dermatopontin: implications for the origins of molluscan shell matrix proteins. J Mol Evol 62:307–18PubMedCrossRefGoogle Scholar
  49. Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–81PubMedCrossRefGoogle Scholar
  50. Shimeld SM, Boyle MJ, Brunet T, Luke GN, Seaver E (2010) Clustered Fox genes in molluscs and annelids and the evolution of mesoderm. Dev Biol 340:234–248Google Scholar
  51. Shimizu K, Sarashina I, Kagi H, Endo K (2011) Possible functions of Dpp in gastropod shell formation and shell coiling. Dev Genes Evol 221:59–68PubMedCrossRefGoogle Scholar
  52. Smith FGW (1935) The development of Patella vulgata. Phil Trans Royal Soc B 225:95–125CrossRefGoogle Scholar
  53. Surget-Groba Y, Montoya-Burgos JI (2010) Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res 20:1432–40PubMedCrossRefGoogle Scholar
  54. Suzuki M, Iwashima A, Tsutsui N, Ohira T, Kogure T, Nagasawa H (2011) Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer. ChemBioChem 16:2478–2487CrossRefGoogle Scholar
  55. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–90PubMedCrossRefGoogle Scholar
  56. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–9PubMedCrossRefGoogle Scholar
  57. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101PubMedCrossRefGoogle Scholar
  58. Veis A (2003) Mineralization in organic matrix frameworks. Biomineralization 54:249–289Google Scholar
  59. Weiss IM, Kaufmann S, Mann K, Fritz M (2000) Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem Biophys Res Commun 267:17–21PubMedCrossRefGoogle Scholar
  60. Wilt FH (2005) Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 280:15–25PubMedCrossRefGoogle Scholar
  61. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–9PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gijsbert D. A. Werner
    • 1
    • 2
  • Patrick Gemmell
    • 1
    • 3
  • Stefanie Grosser
    • 1
    • 4
  • Rebecca Hamer
    • 5
    • 6
  • Sebastian M. Shimeld
    • 1
    Email author
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK
  2. 2.Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Life Sciences Interface Doctoral Training CentreUniversity of OxfordOxfordUK
  4. 4.Landcare Research—Manaaki WhenuaAucklandNew Zealand
  5. 5.Department of StatisticsUniversity of OxfordOxfordUK
  6. 6.Doctoral Training CentreOxfordUK

Personalised recommendations