Marine Biotechnology

, Volume 14, Issue 6, pp 681–691 | Cite as

Diversity of Bacterial Communities Associated with the Indian Ocean Sponge Tsitsikamma favus That Contains the Bioactive Pyrroloiminoquinones, Tsitsikammamine A and B

  • Tara A. Walmsley
  • Gwynneth F. Matcher
  • Fan Zhang
  • Russell T. Hill
  • Michael T. Davies-Coleman
  • Rosemary A. DorringtonEmail author
Original Article


Tsitsikamma favus is a latrunculid sponge endemic to the coast of South Africa that produces unique pyrroloiminoquinones known as tsitsikammamines. Wakayin and makaluvamine A are structurally similar to the tsitsikammamines and are the only pyrroloiminoquinones isolated from a source other than Porifera (namely a Fijian ascidian Clavelina sp. and a laboratory culture of the myxomycete Didymium bahiense, respectively). The source of the tsitsikammamines is hypothesised to be microbial, which could provide a means of overcoming the current supply problem. This study focuses on characterising the microbial diversity associated with T. favus. We have used denaturing gradient gel electrophoresis together with clonal and deep sequencing of microbial 16S rRNA gene amplicons to show that specimens of this sponge species contain a distinct and conserved microbial population, which is stable over time and is dominated by a unique Betaproteobacterium species.


Tsitsikamma favus Tsitsikammamine Bacterial community 16S rRNA Pyrosequencing 



This research was supported by a grant from the South African National Department of Environmental Affairs as well as funding from the US National Science Foundation Physiological and Structural Systems, Division of Integrative and Organismal Systems (IOS-0919728). TW was funded by Fellowships from the South African National Research Foundation (NRF) and the German Academic Exchange Service (DAAD). GM was supported by a NRF Innovation Postdoctoral Fellowship. FZ was supported by a Fulbright Fellowship. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to any of the above-mentioned donors. The authors wish to thank Dr Toufiek Samaai (Oceans and Coasts, South African Department of Environmental Affairs) and Dr Shirley Parker-Nance for their help in collection and identification of sponge specimens.

Supplementary material

10126_2012_9430_MOESM1_ESM.rtf (11.5 mb)
ESM 1 (RTF 11753 kb)


  1. Antunes EM, Beukes DR, Kelly M, Samaai T, Barrows LR, Marshall KM, Sincich C, Davies-Coleman MT (2004) Cytotoxic pyrroloiminoquinones from four new species of South African latrunculid sponges. J Nat Prod 67:1268–1276PubMedCrossRefGoogle Scholar
  2. Antunes EM, Copp BR, Davies-Coleman MT, Samaai T (2005) Pyrroloiminoquinones and related metabolites from marine sponges. Nat Prod Rep 22:62–72PubMedCrossRefGoogle Scholar
  3. Blunt JW, Copp BR, Hu W, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244PubMedCrossRefGoogle Scholar
  4. Copp BR, Ireland CM, Barrows LR (2002) Wakayin: a novel cytotoxic pyrroloiminoquinone alkaloid from the ascidian Clavelina species. J Org Chem 56:4596–4597CrossRefGoogle Scholar
  5. Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732PubMedCrossRefGoogle Scholar
  6. Erpenbeck D, Knowlton AL, Talbot SL, Highsmith RC, Van Soest RWM (2004) A molecular comparison of Alaskan and North East Atlantic Halichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations. Boll Mus Ist Univ Genova 68:319–325Google Scholar
  7. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6 (alpha3). University of Washington, SeattleGoogle Scholar
  8. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  9. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–115CrossRefGoogle Scholar
  10. Gernert C, Glöckner F, Krohne G, Hentschel U (2005) Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol 50:206–212PubMedCrossRefGoogle Scholar
  11. Hamann MT, Rao KV & Peng J (2005) Methods of treating disease through the administration of a manzamine analog or derivative. Greenberg Traurig (Met Life Building, P.A., New York, NY, 10166, US) (Ed.) United StatesGoogle Scholar
  12. Hardoim CCP, Costa R, Araujo FV, Hajdu E, Peixoto R, Lins U, Rosado AS, Van Elsas JD (2009) Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75:3331–3343PubMedCrossRefGoogle Scholar
  13. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177PubMedCrossRefGoogle Scholar
  14. Hill RT, Fenical W (2010) Pharmaceuticals from marine natural products: surge or ebb? Curr Opin Biotechnol 21:777–779PubMedCrossRefGoogle Scholar
  15. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243PubMedCrossRefGoogle Scholar
  16. Hooper GJ, Davies-Coleman MT, Kelly-Borges M, Coetzee PS (1996) New alkaloids from a South African latrunculid sponge. Tet Lett 37:7135–7138CrossRefGoogle Scholar
  17. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255PubMedCrossRefGoogle Scholar
  18. Ishibashi M, Iwasaki T, Imai S, Sakamoto S, Yamaguchi K, Ito A (2001) Laboratory culture of the myxomycetes: formation of fruiting bodies of Didymium bahiense and its plasmodial production of makaluvamine A. J Nat Prod 64:108–110PubMedCrossRefGoogle Scholar
  19. Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine Actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152PubMedCrossRefGoogle Scholar
  20. Kokoshka JM, Capson TL, Holden JA, Ireland CM, Barrows LR (1996) Differences in the topoisomerase I cleavage complexes formed by camptothecin and wakayin, a DNA-intercalating marine natural product. Anti-Cancer Drugs 7:758–765PubMedCrossRefGoogle Scholar
  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, HobokenGoogle Scholar
  22. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y (2010) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664PubMedCrossRefGoogle Scholar
  23. Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416PubMedCrossRefGoogle Scholar
  24. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lubmann R, May M, Nonhoff BR, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  25. Matcher GF, Dorrington RA, Henninger TO, Froneman PW (2011) Insights into the bacterial diversity in a freshwater-deprived permanently open Eastern Cape estuary, using 16S rRNA pyrosequencing analysis. Water SA 37:381–390CrossRefGoogle Scholar
  26. Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine Actinomycete genus Salinispora. Appl Environ Microbiol 71:7019–7028PubMedCrossRefGoogle Scholar
  27. Misof B, Erpenbeck D, Sauer KP (2000) Mitochondrial gene fragments suggest paraphyly of the genus Panorpa (Mecoptera, Panorpidae). Mol Phylogenet Evol 17:76–84PubMedCrossRefGoogle Scholar
  28. Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38–48PubMedCrossRefGoogle Scholar
  29. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238PubMedCrossRefGoogle Scholar
  30. Purkhold U, Wagner M, Timmermann G, Pommerening-Roser A, Koops H-P (2003) 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol 53:1485–1494PubMedCrossRefGoogle Scholar
  31. Radwan M, Hanora A, Zan J, Mohamed N, Abo-Elmatty D, Abou-El-Ela S, Hill R (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12:350–360PubMedCrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  33. Sakai R, Higa T, Jefford CW, Bernardinelli G (2002) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404–6405CrossRefGoogle Scholar
  34. Schläppy M-L, Schöttner S, Lavik G, Kuypers M, De Beer D, Hoffmann F (2010) Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar Biol 157:593–602CrossRefGoogle Scholar
  35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  36. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70PubMedCrossRefGoogle Scholar
  37. Sipkema D, Blanch HW (2010) Spatial distribution of bacteria associated with the marine sponge Tethya californiana. Mar Biol 157:627–638CrossRefGoogle Scholar
  38. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120PubMedCrossRefGoogle Scholar
  39. Tae Kyung K, Mary JG, John AF (2005) Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518CrossRefGoogle Scholar
  40. Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U (2007a) Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J 1:187–190PubMedCrossRefGoogle Scholar
  41. Taylor MW, Radax R, Steger D, Wagner M (2007b) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  42. Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF (2007) Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59:47–63PubMedCrossRefGoogle Scholar
  43. Turque A, Cardoso A, Silveira C, Vieira R, Freitas F, Albano R, Gonzalez A, Paranhos R, Muricy G, Martins O (2008) Bacterial communities of the marine sponges Hymeniacidon heliophil and Polymastia janeirensis and their environment in Rio de Janeiro, Brazil. Mar Biol 155:135–146CrossRefGoogle Scholar
  44. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314CrossRefGoogle Scholar
  45. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biot 33:545–551CrossRefGoogle Scholar
  46. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401PubMedCrossRefGoogle Scholar
  47. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  48. Wang G, Yoon S-H, Lefait E (2009) Microbial communities associated with the invasive Hawaiian sponge Mycale armata. ISME J 3:374–377PubMedCrossRefGoogle Scholar
  49. Webster NS, Blackall LL (2008) What do we really know about sponge-microbial symbioses. ISME J 3:1–3PubMedCrossRefGoogle Scholar
  50. Webster NS, Taylor MW (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 1:1–12Google Scholar
  51. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082PubMedGoogle Scholar
  52. Yousaf M, El Sayed KA, Rao KV, Lim CW, Hu J-F, Kelly M, Franzblau SG, Zhang F, Peraud O, Hill RT, Hamann MT (2002) 12,34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron 58:7397–7402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tara A. Walmsley
    • 1
  • Gwynneth F. Matcher
    • 1
  • Fan Zhang
    • 2
  • Russell T. Hill
    • 2
  • Michael T. Davies-Coleman
    • 3
  • Rosemary A. Dorrington
    • 1
    Email author
  1. 1.Department of Biochemistry, Microbiology and BiotechnologyRhodes UniversityGrahamstownSouth Africa
  2. 2.Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreUSA
  3. 3.Department of ChemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations