Marine Biotechnology

, Volume 13, Issue 6, pp 1169–1182

Marine-Based Cultivation of Diacarnus Sponges and the Bacterial Community Composition of Wild and Maricultured Sponges and Their Larvae

  • Oded Bergman
  • Markus Haber
  • Boaz Mayzel
  • Matthew A. Anderson
  • Muki Shpigel
  • Russell T. Hill
  • Micha Ilan
Original Article


Marine organisms including sponges (Porifera) contain many structurally diverse bioactive compounds, frequently in a low concentration that hampers their commercial production. Two solutions to this problem are: culturing sponge explants for harvesting the desired compound and cultivation of sponge-associated bacteria. These bacteria (often considered the source of the desired compounds) include the Actinobacteria, from which many novel drugs were developed. In a long-term experiment (lasting 767 days), we evaluated the culture amenability of the sponge Diacarnus erythraenus in a mariculture system, placed at 10- and 20-m depths. The growth and survival rates of sponge fragments were monitored. Wild and maricultured sponges from both depths and their larvae were sampled at different time intervals for denaturing gradient gel electrophoresis (DGGE) profiling of the bacterial community residing within them. 16S rRNA gene sequences of both cultured bacterial isolates and clone libraries of unculturable bacteria were composed and compared, focusing on Actinobacteria. Sponges from both depths did not differ significantly either in mean growth rates (percent weight change year−1 ± S.E.) (64.5% ± 21% at 10 m and 79.3% ± 19.1% at 20 m) or in seasonal growth rates. Survival was also very similar (72% at 10 m and 70% at 20 m). There were 88 isolates identified from adults and 40 from their larvae. The isolates and clone libraries showed diverse bacterial communities. The DGGE profiles of wild and maricultured sponges differed only slightly, without a significant effect of depths or dates of sampling. This long-term experiment suggests that D. erythraenus probably remained healthy and indicates its mariculture suitability.


Diacarnus erythraenus Red Sea 16S rRNA gene Aquaculture Mariculture Phylogenetic analysis Marine natural products 


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Barthel D, Theede H (1986) A new method for the culture of marine sponges and its application for experimental studies. Ophelia 25:75–82Google Scholar
  3. Belarbi EH, Gomes AC, Chisti Y, Garcia Camacho FG, Grima EM (2003) Producing drugs from marine sponges. Biotechnol Adv 21:585–598CrossRefGoogle Scholar
  4. Berdy J (1989) The discovery of new bioactive microbial metabolites: screening and identification. In: Bushell ME, Graefe U (eds) Bioactive microbial metabolites (Prog Ind Microbiol, vol 27). Elsevier, AmsterdamGoogle Scholar
  5. Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178CrossRefGoogle Scholar
  6. Blunt JW, Copp BR, Munro MHG, Northcotec PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48PubMedCrossRefGoogle Scholar
  7. Blunt JW, Copp BR, Hu WP, Munro MGH, Northcote PT, Prinsep MP (2009) Marine natural products. Nat Prod Rep 26:170–244PubMedCrossRefGoogle Scholar
  8. Cassler M, Peterson CL, Ledger A, Pomponi SA, Wright AE, Winegar R, McCarthy PJ, Lopez JV (2008) Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp. Microb Ecol 55:384–394PubMedCrossRefGoogle Scholar
  9. Corriero G, Longo C, Mercurio M, Marzano CN, Lembo G, Spedicato MT (2004) Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 238:195–205CrossRefGoogle Scholar
  10. De Caralt S, Sánchez-Fontenla J, Uriz MJ, Wijffels RH (2010) In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the Northwestern Mediterranean. Mar Drugs 8:1731–1742PubMedCrossRefGoogle Scholar
  11. Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679PubMedCrossRefGoogle Scholar
  12. Duckworth AR, Battershill CN (2003) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156CrossRefGoogle Scholar
  13. Duckworth AR, Battershill CN, Schiel DR (2004) Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242:237–250CrossRefGoogle Scholar
  14. El Sayed KA, Hamann MT, Hashish NE, Shier WT, Kelly M, Khan AA (2001) Antimalarial, antiviral, and antitoxoplasmosis norsesterterpene peroxide acids from the Red Sea sponge Diacarnus erythraeanus. J Nat Prod 64:522–524PubMedCrossRefGoogle Scholar
  15. Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732PubMedCrossRefGoogle Scholar
  16. Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48PubMedGoogle Scholar
  17. Ferretti C, Vacca S, Ciucis CD, Marengo B, Duckworth AR, Manconi R, Pronzato R, Domenicotti C (2009) Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Mar Ecol 30:327–336CrossRefGoogle Scholar
  18. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732PubMedCrossRefGoogle Scholar
  19. Gaino E, Burlando B, Buffa P, Saraá M (1987) Ultrastructural study of the mature egg of Tethya citrina Sara and Melone (Polifera, Demospongiae). Gamete Res 16:259–265PubMedCrossRefGoogle Scholar
  20. Giovannoni SG, Rappe MS (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the ocean. Wiley, New YorkGoogle Scholar
  21. Glaser KB, Mayer AMS (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78:440–448PubMedCrossRefGoogle Scholar
  22. Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169CrossRefGoogle Scholar
  23. Hart JB, Lill RE, Hichford SJH, Blunt JW, Munro MHG (2000) The halichondrins: chemistry, biology, supply and delivery. In: Fusetani N (ed) Drugs from the sea. Karger, BaselGoogle Scholar
  24. Hay M (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212CrossRefGoogle Scholar
  25. Hay M, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9(1):10–20Google Scholar
  26. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedCrossRefGoogle Scholar
  27. Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Muller WEG (ed) Mar Mol Biotech. Institute of Molecular Biotechnology, Wurzburg University, Germany. Springer, BerlinGoogle Scholar
  28. Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DCGoogle Scholar
  29. Imhoff JF, Stoehr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Mueller WEG (ed) Sponges (Porifera). Springer, BerlinGoogle Scholar
  30. Janssen PH, Schuhmann A, Mörschel E, Rainey FA (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388PubMedGoogle Scholar
  31. Kashman Y, Rotem M (1979) Muqubilin, a new c24-isoprenoid from a marine sponge. Tetrahedron Lett 20(19):1707–1708CrossRefGoogle Scholar
  32. Kelly-Borges M, Vacelet J (1995) A revision of Diacarnus Burton and Negombata de Laubenfels (Demospongiae: Latranculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Mem Queensl Mus 38(2):447–503Google Scholar
  33. Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16 S rDNA libraries large enough? Limnol Oceanogr Meth 2:114–125CrossRefGoogle Scholar
  34. Kobayashi J, Ishibashi M (1993) Bioactive metabolites from symbiotic marine microorganisms. Chem Rev 93:1753–1769CrossRefGoogle Scholar
  35. Levi C, Levi P (1976) Embryogenese de Chondosia reniformis (NARDO) demosponge ovipare, et transmission des bacteries symbiotiques. Ann Sci Nat 18:367–380Google Scholar
  36. Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416PubMedCrossRefGoogle Scholar
  37. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonho VB, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  38. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedGoogle Scholar
  39. Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008a) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222PubMedCrossRefGoogle Scholar
  40. Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008b) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143PubMedCrossRefGoogle Scholar
  41. Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25PubMedCrossRefGoogle Scholar
  42. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  43. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238PubMedCrossRefGoogle Scholar
  44. Okami Y, Hotta K (1988) Search and discovery of new antibiotics. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San DiegoGoogle Scholar
  45. Oren M, Steindler L, Ilan M (2005) Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus. Mar Biol 148:35–41CrossRefGoogle Scholar
  46. Osinga R (2003) Biotechnological aspects of marine sponges. J Biotechnol 100:91–92PubMedCrossRefGoogle Scholar
  47. Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532PubMedCrossRefGoogle Scholar
  48. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362PubMedCrossRefGoogle Scholar
  49. Piel J, Hofer I, Hui D (2004a) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bacteriol 186:1280–1286PubMedCrossRefGoogle Scholar
  50. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004b) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227PubMedCrossRefGoogle Scholar
  51. Proksch P, Ebel R, Edrada RA, Schupp P, Lin WH, Sudarsono WV, Steube K (2003) Detection of pharmacologically active natural products using ecology. Selected examples from Indopacific marine invertebrates and sponge-derived fungi. Pure Appl Chem 75:343–352CrossRefGoogle Scholar
  52. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, Candidatus Entotheonella palauensis. Mar Biol 136:969–977CrossRefGoogle Scholar
  53. Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708PubMedCrossRefGoogle Scholar
  54. Sciscioli M, Lepore E, Gherardi M, Scalera LL (1994) Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demospongiae): an ultrastructural study. Cahier de Biol Mar 35:471–478Google Scholar
  55. Sharp KH, Eam BE, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629PubMedCrossRefGoogle Scholar
  56. Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng 90:201–222PubMedCrossRefGoogle Scholar
  57. Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg PD (2004) Evidence for acylhomoserinelactone signal production in bacteria associated with marine sponges. Appl Environ Microbiol 70:4387–4389PubMedCrossRefGoogle Scholar
  58. Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433PubMedCrossRefGoogle Scholar
  59. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  60. Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32:97–123PubMedCrossRefGoogle Scholar
  61. Turon X, Marti R, Uriz MJ (2009) Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Sci Mar 73:387–397CrossRefGoogle Scholar
  62. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551PubMedCrossRefGoogle Scholar
  63. Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375PubMedCrossRefGoogle Scholar
  64. Webster NS, Watts JEM, Hill RT (2001a) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608PubMedCrossRefGoogle Scholar
  65. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001b) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444PubMedCrossRefGoogle Scholar
  66. Webster NS, Negri AP, Webbb RI, Hill RT (2002) A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309CrossRefGoogle Scholar
  67. Webster NS, Negri AP, Munro M, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300PubMedCrossRefGoogle Scholar
  68. Youssef DTA (2004) Tasnemoxides A–C, new cytotoxic cyclic norsesterterpene peroxides from the red sea sponge Diacarnus erythraenus. J Nat Prod 67:112–114PubMedCrossRefGoogle Scholar
  69. Zhang H, Zhang W, Jin Y, Jin M, Yu X (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Leeuwenhoek 93:241–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Oded Bergman
    • 1
  • Markus Haber
    • 1
  • Boaz Mayzel
    • 1
  • Matthew A. Anderson
    • 2
  • Muki Shpigel
    • 3
  • Russell T. Hill
    • 2
  • Micha Ilan
    • 1
  1. 1.Department of ZoologyTel Aviv UniversityTel AvivIsrael
  2. 2.Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreUSA
  3. 3.National Center for MaricultureIOLREilatIsrael

Personalised recommendations