Marine Biotechnology

, Volume 13, Issue 5, pp 883–892 | Cite as

Anti-protease and Immunomodulatory Activities of Bacteria Associated with Caribbean Sponges

  • Paula Tabares
  • Sheila M. Pimentel-Elardo
  • Tanja Schirmeister
  • Thomas Hünig
  • Ute HentschelEmail author
Original Article


Marine sponges and their associated bacteria have been proven to be a rich source of novel secondary metabolites with therapeutic usefulness in cancer, infection, and autoimmunity. In this study, 79 strains belonging to 20 genera of the order Actinomycetales and seven strains belonging to two genera of the order Sphingomonadales were cultivated from 18 different Caribbean sponges and identified by 16S rRNA gene sequencing. Seven of these strains are likely to represent novel species. Crude extracts from selected strains were found to exhibit protease inhibition against cathepsins B and L, rhodesain, and falcipain-2 as well as immunomodulatory activities such as induction of cytokine release by human peripheral blood mononuclear cells. These results highlight the significance of marine sponge-associated bacteria to produce bioactive secondary metabolites with therapeutic potential in the treatment of infectious diseases and disorders of the immune system.


Actinomycetes Sphingomonads Marine sponge Anti-protease Immunomodulatory Phylogenetic analysis 



We gratefully acknowledge H. Angermeier (U. Würzburg) and J. Pawlik (U. North Carolina, Wilmington) for sponge collection from the Bahamas, C. Heindl, S. Berr, and C. Gernert for technical assistance in the laboratory and P. Römer for the introduction into the immunological techniques (U. Würzburg). We furthermore thank S. Zea (INVEMAR, Santa Marta, Colombia) for help in sponge identification as well as L. Veloza and L.E. Ramírez (Universidad Tecnológica de Pereira, Colombia) for providing the laboratory conditions for the cultivation of the Colombian strains. Financial support was provided by a doctoral fellowship (Graduate College “Immunomodulation GK 520” funded by the DFG) to P.T. and the DFG (SFB 630 TP A5) to U.H.

Supplementary material

10126_2010_9349_MOESM1_ESM.doc (26 kb)
Supplementary Table 1 16S rRNA gene based phylogenetic affiliation of actinomycete isolates (DOC 103 kb)
10126_2010_9349_MOESM2_ESM.doc (15 kb)
Supplementary Table 2 16S rRNA gene based phylogenetic affiliation of sphingomonad isolates (DOC 30.0 kb)


  1. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 8:399–412PubMedCrossRefGoogle Scholar
  2. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767PubMedCrossRefGoogle Scholar
  3. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736PubMedCrossRefGoogle Scholar
  4. Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259PubMedCrossRefGoogle Scholar
  5. Breuning A, Degel B, Schulz F, Buchold C, Stempka M, Machon U, Heppner S, Gelhaus C, Leippe M, Leyh M, Kisker C, Rath J, Stich A, Gut J, Rosenthal PJ, Schmuck C, Schirmeister T (2010) Michael acceptor based antiplasmodial and antitrypanosomal cysteine protease inhibitors with unusual amino acids. J Med Chem 53:1951–1963PubMedCrossRefGoogle Scholar
  6. Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org Lett 7:2731–2734PubMedCrossRefGoogle Scholar
  7. Calkins CC, Sloane BF (1995) Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe Seyler 376:71–80PubMedGoogle Scholar
  8. Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8:970–976PubMedCrossRefGoogle Scholar
  9. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569PubMedCrossRefGoogle Scholar
  10. Danner SA, Carr A, Leonard JM, Lehman LM, Gudiol F, Gonzales J, Raventos A, Rubio R, Bouza E, Pintado V, Aguado AG, Delomas JG, Delgado R, Borleffs JCC, Hsu A, Valdes JM, Boucher CAB, Cooper DA, Gimeno C, Clotet B, Tor J, Ferrer E, Martinez PL, Moreno S, Zancada G, Alcami J, Noriega AR, Pulido F, Glassman HN (1995) A short-term study of the safety, pharmacokinetics, and efficacy of Ritonavir, an inhibitor of Hiv-1 protease. New Engl J Med 333:1528–1533PubMedCrossRefGoogle Scholar
  11. Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67:539–548PubMedCrossRefGoogle Scholar
  12. Ersmark K, Del Valle JR, Hanessian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Edit 47:1202–1223CrossRefGoogle Scholar
  13. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Edit 42:355–357CrossRefGoogle Scholar
  14. Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17:2175–2180PubMedCrossRefGoogle Scholar
  15. Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87:37–42PubMedCrossRefGoogle Scholar
  16. Gulder TA, Moore BS (2009) Chasing the treasures of the sea—bacterial marine natural products. Curr Opin Microbiol 12:252–260PubMedCrossRefGoogle Scholar
  17. Heindl H, Wiese J, Thiel V, Imhoff JF (2010) Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst Appl Microbiol 33:94–104PubMedCrossRefGoogle Scholar
  18. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312PubMedCrossRefGoogle Scholar
  19. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440PubMedCrossRefGoogle Scholar
  20. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177PubMedCrossRefGoogle Scholar
  21. Hozumi M, Ogawa M, Sugimura T, Takeuchi T, Umezawa H (1972) Inhibition of tumorigenesis in mouse skin by leupeptin, a protease inhibitor from actinomycetes. Cancer Res 32:1725–1728PubMedGoogle Scholar
  22. Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 87:43–48PubMedCrossRefGoogle Scholar
  23. Jiang S, Li X, Zhang L, Sun W, Dai S, Xie L, Liu Y, Lee K (2008) Culturable actinobacteria isolated from marine Sponge Iotrochota sp. Mar Biol 153:945–952CrossRefGoogle Scholar
  24. Kaeppler U, Stiefl N, Schiller M, Vicik R, Breuning A, Schmitz W, Rupprecht D, Schmuck C, Baumann K, Ziebuhr J, Schirmeister T (2005) A new lead for nonpeptidic active-site-directed inhibitors of the severe acute respiratory syndrome coronavirus main protease discovered by a combination of screening and docking methods. J Med Chem 48:6832–6842PubMedCrossRefGoogle Scholar
  25. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518PubMedCrossRefGoogle Scholar
  26. Klinman DM, Klaschik S, Tomaru K, Shirota H, Tross D, Ikeuchi H (2010) Immunostimulatory CpG oligonucleotides: effect on gene expression and utility as vaccine adjuvants. Vaccine 28:1919–1923PubMedCrossRefGoogle Scholar
  27. Kwon HC, Kauffman CA, Jensen PR, Fenical W (2006) Marinomycins A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632PubMedCrossRefGoogle Scholar
  28. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251PubMedCrossRefGoogle Scholar
  29. Lane DJ (1991) 16S/23S rRNA sequencing. Wiley, ChichesterGoogle Scholar
  30. Laroche M, Imperatore C, Grozdanov L, Costantino V, Mangoni A, Hentschel U, Fattorusso E (2007) Cellular localisation of secondary metabolites isolated from the Caribbean sponge Plakortis simplex. Mar Biol 151:1365–1373CrossRefGoogle Scholar
  31. Long XT, Deng S, Mattner JC, Zang Z, Zhou D, Mcnary N, Goff RD, Teyton L, Bendelac A, Savage PB (2007) Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat Chem Biol 3:559–564PubMedCrossRefGoogle Scholar
  32. Ludewig S, Kossner M, Schiller M, Baumann K, Schirmeister T (2010) Enzyme kinetics and hit validation in fluorimetric protease assays. Curr Top Med Chem 10:368–382PubMedCrossRefGoogle Scholar
  33. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  34. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529PubMedCrossRefGoogle Scholar
  35. Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable Actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87:11–18PubMedCrossRefGoogle Scholar
  36. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011PubMedCrossRefGoogle Scholar
  37. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36PubMedCrossRefGoogle Scholar
  38. Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  39. Nakao Y, Fujita M, Warabi K, Matsunaga S, Fusetani N (2000) Bioactive marine metabolites. Part 104. Miraziridine A, a novel cysteine protease inhibitor from the marine sponge Theonella aff. mirabilis. J Am Chem Soc 122:10462–10463CrossRefGoogle Scholar
  40. Park JJ, Lee JH, Seo KC, Bricard G, Venkataswamy MM, Porcelli SA, Chung SK (2010) Syntheses and biological activities of KRN7000 analogues having aromatic residues in the acyl and backbone chains with varying stereochemistry. Bioorg Med Chem Lett 20:814–818PubMedCrossRefGoogle Scholar
  41. Pimentel-Elardo S, Gulder TAM, Hentschel U, Bringmann G (2008) Cebulactams A1 and A2, new macrolactams isolated from Saccharopolyspora cebuensis, the first obligate-marine strain of the genus Saccharopolyspora. Tetrahedron Lett 49:6889–6892CrossRefGoogle Scholar
  42. Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar Drugs 8:373–380PubMedCrossRefGoogle Scholar
  43. Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Mesecar AD (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA 103:5717–5722PubMedCrossRefGoogle Scholar
  44. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233PubMedCrossRefGoogle Scholar
  45. Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI, Latyshev N, Mikhailov VV (2007) Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 57:358–363PubMedCrossRefGoogle Scholar
  46. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2009) Arenicella xantha gen. nov., sp. nov., a novel Gammaproteobacterium isolated from a marine sandy sediment from the Sea of Japan. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.017194-0
  47. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762PubMedGoogle Scholar
  48. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76:3702–3714PubMedCrossRefGoogle Scholar
  49. Shirling E, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:317–327CrossRefGoogle Scholar
  50. Stach JE, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 87:3–9PubMedCrossRefGoogle Scholar
  51. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  52. Sun W, Dai S, Jiang S, Wang G, Liu G, Wu H, Li X (2010) Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek 98:65–75PubMedCrossRefGoogle Scholar
  53. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  54. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799PubMedCrossRefGoogle Scholar
  55. Vicik R, Busemann M, Gelhaus C, Stiefl N, Scheiber J, Schmitz W, Schulz F, Mladenovic M, Engels B, Leippe M, Baumann K, Schirmeister T (2006a) Aziridide-based inhibitors of cathepsin L: synthesis, inhibition activity, and docking studies. ChemMedChem 1:1126–1141PubMedCrossRefGoogle Scholar
  56. Vicik R, Hoerr V, Glaser M, Schultheis M, Hansell E, Mckerrow JH, Holzgrabe U, Caffrey CR, Ponte-Sucre A, Moll H, Stich A, Schirmeister T (2006b) Aziridine-2, 3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents. Bioorg Med Chem Lett 16:2753–2757PubMedCrossRefGoogle Scholar
  57. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCrossRefGoogle Scholar
  58. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444PubMedCrossRefGoogle Scholar
  59. WHO (2009) World malaria report 2009. World Health Organization, GenevaGoogle Scholar
  60. Zhang HT, Zhang W, Jin Y, Jin MF, Yu XJ (2008) A comparative study on the phylogenetic diversity of culturable Actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek 93:241–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paula Tabares
    • 1
  • Sheila M. Pimentel-Elardo
    • 1
  • Tanja Schirmeister
    • 2
  • Thomas Hünig
    • 3
  • Ute Hentschel
    • 1
    Email author
  1. 1.Julius-von-Sachs-Institute for Biological SciencesUniversity of WürzburgWürzburgGermany
  2. 2.Institute for Pharmacy and Food ChemistryUniversity of WürzburgWürzburgGermany
  3. 3.Institute for Virology and ImmunobiologyUniversity of WürzburgWürzburgGermany

Personalised recommendations