Advertisement

Marine Biotechnology

, Volume 13, Issue 3, pp 557–562 | Cite as

Genetic and Physical Mapping of Sex-Linked AFLP Markers in Nile Tilapia (Oreochromis niloticus)

  • Bo-Young Lee
  • Jean-Pierre Coutanceau
  • Catherine Ozouf-Costaz
  • Helena D’Cotta
  • Jean-Francois Baroiller
  • Thomas D. KocherEmail author
Original Article

Abstract

Identification of the sex-determining genes of the Nile tilapia (Oreochromis niloticus) has important implications for commercial aquaculture. We previously identified an XX/XY sex-determining locus in this species within a 10-cM interval between markers GM201 and UNH995 on linkage group one (LG1). In order to refine this region, we developed new AFLP markers using bulked segregant analysis of the mapping families. We identified three AFLP markers that showed a sex-specific pattern of segregation. All three mapped near, but just outside, the previously identified sex-determining region on LG1. Hybridization of BAC clones containing these markers to chromosome spreads confirmed that the XX/XY sex-determining locus is on one of the small chromosomes in O. niloticus.

Keywords

AFLP Sex chromosomes Oreochromis niloticus Tilapia Sex-linked markers 

Notes

Acknowledgements

This project was supported by National Research Initiative competitive grant no. 2006-04830 from the USDA National Institute of Food and Agriculture Animal Genome Program and grant no. IS-3995-07 US-Israel Binational Agricultural Research and Development Fund.

References

  1. Abucay JS, Mair GC, Skibinski DOF, Beardmore JA (1999) Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture 173:219–234CrossRefGoogle Scholar
  2. Baroiller JF, Chourrout D, Fostier A, Jalabert B (1995) Temperature and sex-chromosomes govern sex-ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. J Exp Zool 273:216–223CrossRefGoogle Scholar
  3. Campos-Ramos R, Harvey SC, Masabanda JS, Carrasco LAP, Griffin DK, Mcandrew BJ, Bromage NR, Penman DJ (2001) Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica 111:143–153PubMedCrossRefGoogle Scholar
  4. Carrasco LAP, Penman DJ, Bromage N (1999) Evidence for the presence of sex chromosomes in the Nile tilapia (Oreochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes. Aquaculture 173:207–218CrossRefGoogle Scholar
  5. Cnaani A, Lee BY, Zilberman N, Ozouf-Costaz C, Hulata G, Ron M, D’hont A, Baroiller JF, D’cotta H, Penman DJ, Tomasino E, Coutanceau JP, Pepey E, Shirak A, Kocher TD (2008) Genetics of sex determination in tilapiine species. Sex Dev 2:43–54PubMedCrossRefGoogle Scholar
  6. Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, Mcandrew BJ, Penman DJ (2004) Isolation and physical mapping of sex-linked AFLP markers in nile tilapia (Oreochromis niloticus L.). Mar Biotechnol (NY) 6:435–445CrossRefGoogle Scholar
  7. FAO Fisheries (2007) The state of world fisheries and aquaculture 2006. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  8. Fischer C, Ozouf-Costaz C, Roest CH, Dasilva C, Jaillon O, Bouneau L, Bonillo C, Weissenbach J, Bernot A (2000) Karyotype and chromosome location of characteristic tandem repeats in the pufferfish Tetraodon nigroviridis. Cytogenet Cell Genet 88:50–55PubMedCrossRefGoogle Scholar
  9. Harvey SC, Masabanda J, Carrasco LA, Bromage NR, Penman DJ, Griffin DK (2002) Molecular-cytogenetic analysis reveals sequence differences between the sex chromosomes of Oreochromis niloticus: evidence for an early stage of sex-chromosome differentiation. Cytogenet Genome Res 97:76–80PubMedCrossRefGoogle Scholar
  10. Hopkins KD, Shelton WL, Engle CR (1979) Estrogen sex-reversal of Tilapia aurea. Aquaculture 18:263–268CrossRefGoogle Scholar
  11. Karayucel I, Ezaz T, Karayucel S, Mcandrew BJ, Penman DJ (2004) Evidence for two unlinked “sex reversal” loci in the Nile tilapia, Oreochromis niloticus, and for linkage of one of these to the red body colour gene. Aquaculture 234:51–63CrossRefGoogle Scholar
  12. Katagiri T, Asakawa S, Minagawa S, Shimizu N, Hirono I, Aoki T (2001) Construction and characterization of BAC libraries for three fish species; rainbow trout, carp and tilapia. Anim Genet 32:200–204PubMedCrossRefGoogle Scholar
  13. Katagiri T, Kidd C, Tomasino E, Davis JT, Wishon C, Stern JE, Carleton KL, Howe AE, Kocher TD (2005) A BAC-based physical map of the Nile tilapia genome. BMC Genomics 6:89PubMedCrossRefGoogle Scholar
  14. Lee BY (2004) Approach to the identification of sex-determining genes in the tilapia genome by genetic mapping and comparative positional cloning. Program in genetics. University of New Hampshire, DurhamGoogle Scholar
  15. Lee BY, Kocher TD (2007a) Exclusion of Wilms tumour (WT1b) and ovarian cytochrome P450 aromatase (CYP19A1) as candidates for sex determination genes in Nile tilapia (Oreochromis niloticus). Anim Genet 38:85–86CrossRefGoogle Scholar
  16. Lee BY, Kocher TD (2007b) Comparative genomics and positional cloning, chapter 19. In: Liu J (ed) Aquaculture genome technologies. Wiley-Blackwell, Ames, IA, pp 323–335Google Scholar
  17. Lee BY, Penman DJ, Kocher TD (2003) Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim Genet 34:379–383PubMedCrossRefGoogle Scholar
  18. Lee BY, Hulata G, Kocher TD (2004) Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92:543–549PubMedCrossRefGoogle Scholar
  19. Mair GC, Scott AG, Penman DJ, Beardmore JA, Skibinski DOF (1991) Sex determination in the genus Oreochromis. 1. Sex reversal, gynogenesis andtriploidy in Oreochromis niloticus (L). Theor Appl Genet 82:144–152CrossRefGoogle Scholar
  20. Mair GC, Abucay JS, Skibinski DOF, Abella TA, Beardmore JA (1997) Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus. Can J Fish Aquat Sci 54:396–404CrossRefGoogle Scholar
  21. Majumdar KC, Mcandrew BJ (1986) Relative DNA content of somatic nuclei and chromosomal studies in 3 genera, Tilapia, Sarotherodon, and Oreochromis of the Tribe Tilapiini (Pisces, Cichlidae). Genetica 68:175–188CrossRefGoogle Scholar
  22. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  23. Ocalewicz K, Mota-Velasco JC, Campos-Ramos R, Penman DJ (2009) FISH and DAPI staining of the synaptonemal complex of the Nile tilapia (Oreochromis niloticus) allow orientation of the unpaired region of bivalent 1 observed during early pachytene. Chromosome Res 17:773–782PubMedCrossRefGoogle Scholar
  24. Rosenstein S, Hulata G (1994) Sex reversal in the genus Oreochromis: optimization of feminization protocol. Aquac Res 25:329–339CrossRefGoogle Scholar
  25. Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci 13:523–535PubMedGoogle Scholar
  26. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744CrossRefGoogle Scholar
  27. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bo-Young Lee
    • 1
    • 4
  • Jean-Pierre Coutanceau
    • 2
  • Catherine Ozouf-Costaz
    • 2
  • Helena D’Cotta
    • 3
  • Jean-Francois Baroiller
    • 3
  • Thomas D. Kocher
    • 4
    Email author
  1. 1.Laboratory of Bioinformatics and Population Genetics, Department of Food and Animal BiotechnologySeoul National UniversitySeoulRepublic of Korea
  2. 2.Département Systématique et Evolution, Muséum national d’ Histoire naturelleParis Cedex 05France
  3. 3.CIRAD-Persyst, Aquaculture et Gestion des Resources AquatiquesMontpellierFrance
  4. 4.Department of BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations