Marine Biotechnology

, Volume 13, Issue 3, pp 366–375 | Cite as

UV-A Mediated Modulation of Photosynthetic Efficiency, Xanthophyll Cycle and Fatty Acid Production of Nannochloropsis

  • Eduardo Forján
  • Inés Garbayo
  • Marta Henriques
  • Jorge Rocha
  • José M. Vega
  • Carlos Vílchez
Original Article


Nannochloropsis, a green microalga, is a source for commercially valuable compounds as extensively described and, in particular, is recognised as a good potential source of eicosapentaenoic acid (20:5ϖ3), an important polyunsaturated fatty acid for human consumption for prevention of several diseases. Climate change might include variation in the ultraviolet (UV) levels as one of the consequences derived from the anthropogenic activity. This paper shows the response of Nannochloropsis cultures exposed for 7 days to UV-A (320–400 nm) added to photosynthetically active radiation (PAR; 400–700 nm). Growth rates and photosynthetic activity were assessed to determine the impact of UV-A increased levels on the cell growth and basic metabolism activity. Xanthophyll pigments (zeaxanthin and violaxanthin), carotenoids (canthaxanthin and β-carotene) and polyunsaturated fatty acids (myristic, palmitic, palmitoleic, arachidonic and eicosapentaenoic acids) were measured for assessing the antioxidant response of the microalgae to added UV-A radiation to PAR. The results show that the modulated use of UV-A radiations can lead to increased growth rates, which are sustained in time by an increased light transduction activity. The expected antioxidant response to the incident UV-A radiation consisted of increases in zeaxanthin and β-carotene contents—synthesis of antioxidant carotenoids—and increases in the saturated fatty acids to polyunsaturated fatty acids ratio. The results suggest that modulated UV-A radiation can be used as a tool to stimulate value molecules accumulation in microalgae through an enhanced both light transduction process and antioxidant response, while sustaining cell growth.


Microalgae Nannochloropsis UV-A Xanthophyll cycle Fatty acids 



This work has been supported by Ministerio de Educación y Ciencia of Spain (Proyecto AGL2006-12741), Junta de Andalucía (Proyectos de Excelencia, AGR-4337) and Instituto Andaluz de Biotecnología (Programa BIOÁNDALUS).


  1. Barbosa M, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20:115–123PubMedCrossRefGoogle Scholar
  2. Baroli I, Niyogi KK (2000) Molecular genetics of xanthophylls-dependent photoprotection in green algae and plants. Phil Trans R Soc Lond B 355:1385–1394CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. Cawse PA (1967) The determination of nitrate in soil solutions by ultraviolet espectrophotometry. Analyst 92:311–315CrossRefGoogle Scholar
  5. Chini-Zitelli G, Lavista F, Bastianini A, Rodolfo L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312CrossRefGoogle Scholar
  6. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  7. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:131–141CrossRefGoogle Scholar
  8. Demmig B, Winter K, Krüger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light. Plant Physiol 84:218–224PubMedCrossRefGoogle Scholar
  9. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta 1020:1–24CrossRefGoogle Scholar
  10. Döhler G, Drebes G, Lohmann M (1997) Effect of UV-A and UV-B radiation on pigments, free amino acids and adenylate content of Dunaliella tertiolecta. J Photochem Photobiol 40:126–131CrossRefGoogle Scholar
  11. Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophylls cycle, its regulation and components. Physiol Plant 100:806–816CrossRefGoogle Scholar
  12. Florencio FJ, Vega JM (1983) Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii. Planta 158:288–293CrossRefGoogle Scholar
  13. Gilmore AM (1997) Mechanistic aspects of xanthophylls cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99(No 1):197–209CrossRefGoogle Scholar
  14. Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Denotula confervaceae (Cleve). Gran Can J Microbiol 8:229–239CrossRefGoogle Scholar
  15. Heraud P, Beardall J (2000) Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes. Photosynt Res 63:123–134CrossRefGoogle Scholar
  16. Holm-Hansen O, Lubin D, Helbling EW (1993) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum, New York, pp 379–425Google Scholar
  17. Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y (2005) Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. J Appl Phycol 17:29–34CrossRefGoogle Scholar
  18. Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Biores Technol 100:3921–3926CrossRefGoogle Scholar
  19. Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol 48:68–74CrossRefGoogle Scholar
  20. Kessler E (1964) Nitrate assimilation by plants. Ann Rev Plant Physiol 15:57–72CrossRefGoogle Scholar
  21. Laws EA, Berning JL (1991) Photosynthetic efficiency optimization studies with the macroalga Gracilaria tikvihae: implications for CO2 emission control from power plants. Biores Technol 37:25–33CrossRefGoogle Scholar
  22. León R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52CrossRefGoogle Scholar
  23. Liang Y, Beardall J, Heraud P (2006) Effect of UV radiation on growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Phycologia 45:605–615CrossRefGoogle Scholar
  24. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  25. Lubián LM, Montero O, Moreno-Garrido I, Huertas E, Sobrino C, González del Valle M, Parés G (2000) Nannochloropsis as source of commercially valuable pigments. J App Phycol 12:249–255CrossRefGoogle Scholar
  26. Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubian LM, Montero O (2005) Supercritical fuid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66:245–251CrossRefGoogle Scholar
  27. Maiorella BL, Blanch HW, Wilke CR (1983) Distillery effluent treatment and byproduct recovery. Proc Biochem 18:5–8Google Scholar
  28. Melis A, Neidhardt J, Baroli I, Benemann JR (1999) Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In: Zaborsky O (ed) BioHydrogen part II. Springer, New York, pp 41–52CrossRefGoogle Scholar
  29. Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedCrossRefGoogle Scholar
  30. Pirt SJ (1965) Maintenance energy of bacteria in growing cultures. Proc Royal Soc B 163:224–231CrossRefGoogle Scholar
  31. Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell, OxfordGoogle Scholar
  32. Polle JE, Kanakagiri S, EonSeon J, Tatsuru M, Melis A (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264CrossRefGoogle Scholar
  33. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefGoogle Scholar
  34. Renaud SM, Parry DL, Luong-Van T, Kuo C, Padovan A, Sammy N (1991) Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53CrossRefGoogle Scholar
  35. Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248PubMedCrossRefGoogle Scholar
  36. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedCrossRefGoogle Scholar
  37. Salguero A, León RM, Mariotti A, De la Morena BA, Vega JM, Vilchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Microbiol Biotechnol 66:506–511PubMedCrossRefGoogle Scholar
  38. Sato N, Murata N (1988) Membrane lipids. Methods Enzymol 167:251–259CrossRefGoogle Scholar
  39. Vílchez C, Garbayo I, Lobato MV, Vega JM (1997) Microalgae-mediated chemicals production and wastes removal. Enz Microb Technol 20:562–572CrossRefGoogle Scholar
  40. Volkman JK, Malcom RB, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class eustigmatophyceae. J Phycol 29:69–78CrossRefGoogle Scholar
  41. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313Google Scholar
  42. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  43. White AL, Jahnke LS (2002) Contrasting Effects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant Cell Physiol 43:877–884PubMedCrossRefGoogle Scholar
  44. Yang ST, Okos MR (1987) Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens. Biotechnol Bioeng 30:661–667PubMedCrossRefGoogle Scholar
  45. Young A, Orset S, Tsavalos A (1997) Methods for carotenoids analysis. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 597–622Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eduardo Forján
    • 1
  • Inés Garbayo
    • 1
  • Marta Henriques
    • 2
  • Jorge Rocha
    • 2
  • José M. Vega
    • 3
  • Carlos Vílchez
    • 1
    • 4
  1. 1.Facultad de Ciencias Experimentales, Algal Biotechnology GroupUniversidad de HuelvaHuelvaSpain
  2. 2.Chemical Engineering DepartmentUniversity of CoimbraCoimbraPortugal
  3. 3.Facultad de Química, Departamento de Bioquímica Vegetal y Biología MolecularUniversidad de SevillaSevillaSpain
  4. 4.International Centre for Environmental Research (CIECEM)Universidad de HuelvaHuelvaSpain

Personalised recommendations