Marine Biotechnology

, Volume 12, Issue 3, pp 241–252

Marine Glycobiology: Current Status and Future Perspectives

Invited Review
  • 436 Downloads

Abstract

Glycobiology, which is the study of the structure and function of carbohydrates and carbohydrate containing molecules, is fundamental to all biological systems. Progress in glycobiology has shed light on a range of complex biological processes associated with, for example, disease and immunology, molecular and cellular communication, and developmental biology. There is an established, if rather modest, tradition of glycobiology research in marine systems that has primarily focused on reproduction, biofouling, and chemical communication. The current status of marine glycobiology research is primarily descriptive with very limited progress on structural elucidation and the subsequent definition of precise functional roles beyond a small number of classical examples, e.g., induction of the acrosome reaction in echinoderms. However, with recent advances in analytical instrumentation, there is now the capacity to begin to characterize marine glycoconjugates, many of which will have potential biomedical and biotechnological applications. The analytical approach to glycoscience has developed to such an extent that it has acquired its own “-omics” identity. Glycomics is the quest to decipher the complex information conveyed by carbohydrate molecules—the carbohydrate code or glycocode. Due to the paucity of structural information available, this article will highlight the fundamental importance of glycobiology for many biological processes in marine organisms and will draw upon the best defined systems. These systems therefore may prove genuine candidates for full carbohydrate characterization.

Keywords

Carbohydrate Cell recognition Glycobiology Glycomics Glycoprotein Lectin Reproduction 

References

  1. Abdou ES, Elkholy SS, Elsabee MZ, Mohamed E (2008) Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. J Appl Polym Sci 108:2290–2296CrossRefGoogle Scholar
  2. Addepalli MK, Fujita Y, Kanai K (2002) A monoclonal antibody and the lectin wheat germ agglutinin induce zoospore encystment in Pythium porphyrae, a marine microbial pathogen. Mycologia 94:712–721CrossRefGoogle Scholar
  3. Alpuche J, Pereyra A, Agundis C, Rosas C, Pascual C, Slomianny M-C, Vázquez L, Zenteno E (2005) Purification and characterisation of a lectin from the white shrimp Litopenaeus setiferus (Crustacea decapoda) hemolymph. Biochim Biophys Acta-Gen Subjects 1724:86–93CrossRefGoogle Scholar
  4. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77:410–419CrossRefGoogle Scholar
  5. Altmann F, Fabini G, Ahorn H, Wilson IBH (2001) Genetic model organisms in the study of N-glycans. Biochimie 83:703–712PubMedCrossRefGoogle Scholar
  6. Alves AP, Mulloy B, Diniz JA, Mourao PAS (1997) Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins. J Biol Chem 272:6965–6971PubMedCrossRefGoogle Scholar
  7. Alves AP, Mulloy B, Moy GW, Vacquier VD, Mourao PAS (1998) Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans. Glycobiology 8:939–946PubMedCrossRefGoogle Scholar
  8. Anderson KE, Waite JH (2002) Biochemical characterization of a byssal protein from Dreissena bugensis (Andrusov). Biofouling 18:37–45CrossRefGoogle Scholar
  9. Aoki S, Cao LW, Matsui K, Rachmat R, Akiyama S, Kobayashi M (2004) Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp. Tetrahedron 60:7053–7059CrossRefGoogle Scholar
  10. Armant DR, Kaplan HA, Lennarz WJ (1986) N-Linked glycoprotein biosynthesis in the developing mouse embryo. Dev Biol 113:228–237PubMedCrossRefGoogle Scholar
  11. Arranz-Plaza E, Tracy AS, Siriwardena A, Pierce JM, Boons GJ (2002) High-avidity, low-affinity multivalent interactions and the block to polyspermy in Xenopus laevis. J Am Chem Soc 124:13035–13046PubMedCrossRefGoogle Scholar
  12. Axford J (2001) The impact of glycobiology on medicine. Trends Immunol 22:237–239PubMedCrossRefGoogle Scholar
  13. Baginski T, Hirohashi N, Hoshi M (1999) Sulfated O-linked glycans of the vitelline coat as ligands in gamete interaction in the ascidian, Halocynthia roretzi. Dev Growth Differ 41:357–364PubMedCrossRefGoogle Scholar
  14. Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest disease of horticultural commodities. Crop Prot 25:108–118CrossRefGoogle Scholar
  15. Bavington CD, Lever R, Mulloy B, Grundy MM, Page CP, Richardson NV, McKenzie JD (2004) Anti-adhesive glycoproteins in echinoderm mucus secretions. Comp Biochem Physiol B 139:607–617PubMedCrossRefGoogle Scholar
  16. Benevides NMB, Holanda ML, Melo FR, Freitas ALP, Sampaio AH (1998) Purification and partial characterisation of the lectin from the marine red alga Enantiocladia duperreyi (C. Agardh) Falkenberg. Bot Mar 41:521–525CrossRefGoogle Scholar
  17. Benevides NMB, Holanda ML, Melo FR, Pereira MG, Monteiro ACO, Freitas ALP (2001) Purification and partial characterization of the lectin from the marine green alga Caulerpa cupressoides (Vahl) C. Agardh. Bot Mar 44:17–22CrossRefGoogle Scholar
  18. Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001) The Chondrus crispus–Acrochaete operculata host–pathogen association, a novel model in glycobiology and applied phycopathology. J Appl Phycol 13:185–193CrossRefGoogle Scholar
  19. Bretting H, Donadey C, Vacelet J, Jacobs G (1981) Investigations on the occurrence of lectins in marine sponges with special regard to some species of the family Axinellidae. Comp Biochem Physiol B 70:69–76CrossRefGoogle Scholar
  20. Brown BR, Hutchison JC, Hughes ME, Kellogg DR, Murray RW (2002) Electrical characterization of gel collected from shark electrosensors. Phys Rev E Stat Nonlin Soft Matter Phys 65:061903PubMedGoogle Scholar
  21. Buchmann K (1998) Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea). Dis Aquat Org 32:195–200PubMedCrossRefGoogle Scholar
  22. Bulgakov AA, Park KI, Choi KS, Lim HK, Cho M (2004) Purification and characterisation of a lectin isolated from the Manila clam Ruditapes philippinarum in Korea. Fish Shellfish Immunol 16:487–499PubMedCrossRefGoogle Scholar
  23. Burchard RP, Sorongon ML (1998) A gliding bacterium strain inhibits adhesion and motility of another gliding bacterium strain in a marine biofilm. Appl Environ Microbiol 64:4079–4083PubMedGoogle Scholar
  24. Calabro A, Midura RJ, Hascall VC, Plaas A, Goodstone NJ, Rodén L (2000) Structure and biosynthesis of chondroitin sulfate and hyaluronan. In: Iozzo RV (ed) Proteoglycans, structure, biology, and molecular interactions. CRC, New York, pp 5–26Google Scholar
  25. Carson DD (2002) The glycobiology of implantation. Front Biosci 7:1535–1544CrossRefGoogle Scholar
  26. Chang LC, Whittaker NF, Bewley CA (2003) Crambescidin 826 and dehydrocrambine A: new polycyclic guanidine alkaloids from the marine sponge Monanchora sp. that inhibit HIV-1 fusion. J Nat Prod 66:1490–1494PubMedCrossRefGoogle Scholar
  27. Clare AS, Matsumura K (2000) Nature and perception of barnacle settlement pheromones. Biofouling 15:57–71CrossRefGoogle Scholar
  28. Cooksey KE, Wigglesworth-Cooksey B (1995) Adhesion of bacteria and diatoms to surfaces in the sea—a review. Aquat Microb Ecol 9:87–96CrossRefGoogle Scholar
  29. Costas E, Rodas VL (1994) Identification of marine dinoflagellates using fluorescent lectins. J Phycol 30:987–990CrossRefGoogle Scholar
  30. Crisp DJ, Meadows PS (1963) Adsorbed layers: the stimulus to settlement in barnacles. Proc R Soc Lond Ser B Biol Sci 158:364–387CrossRefGoogle Scholar
  31. Cummings RD, Nyame AK (1996) Glycobiology of schistosomiasis. FASEB J 10:838–848PubMedGoogle Scholar
  32. Cummings RD, Nyame AK (1999) Schistosome glycoconjugates. Biochim Biophys Acta-Mol Basis Dis 1455:363–374Google Scholar
  33. DeAngelis PL (1999) Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci 56:670–682PubMedCrossRefGoogle Scholar
  34. Dell A, Morris HR, Easton RL, Patankar M, Clark GF (1999) The glycobiology of gametes and fertilisation. Biochim Biophys Acta-Gen Subjects 1473:196–205CrossRefGoogle Scholar
  35. Dreanno C, Matsumura K, Dohmae N, Takio K, Hirota H, Kirby RR, Clare AS (2006) An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Nat Acad Sci USA 103:14396–14401PubMedCrossRefGoogle Scholar
  36. Epel D (1998) Use of multidrug transporters as first lines of defence against toxins in aquatic organisms. Comp Biochem Physiol 120:23–28CrossRefGoogle Scholar
  37. Estevez JM, Fernández PV, Kasulin L, Dupree P, Ciancia M (2009) Chemical and in situ characterisation of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19:212–228PubMedCrossRefGoogle Scholar
  38. Eufemia N, Clerte S, Girshick S, Epel D (2002) Algal products as naturally occurring substrates for p-glycoprotein in Mytilus californianus. Mar Biol 140:343–353CrossRefGoogle Scholar
  39. Ferrari KM, Targett NM (2003) Chemical attractants in horseshoe crab, Limulus polyphemus, eggs: the potential for an artificial bait. J Chem Ecol 29:477–496PubMedCrossRefGoogle Scholar
  40. Fontaine AR (1964) The integumentary mucous secretions of the ophiuroid Ophiocomina nigra. J Mar Biol Assoc UK 44:145–162CrossRefGoogle Scholar
  41. Fukuda MN, Akama TO (2003) The in vivo role of α-mannosidase IIx and its role in processing of N-glycans in spermatogenesis. Cell Mol Life Sci 60:1351–1355PubMedCrossRefGoogle Scholar
  42. Gaill F, Persson J, Sugiyama J, Vurong R, Chanzy H (1992) The chitin system in the tubes of deep sea hydrothermal vent worms. J Struct Biol 109:116–128CrossRefGoogle Scholar
  43. Gundacker D, Leys SP, Schroder HC, Muller IM, Muller WEG (2001) Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor. Glycobiology 11:21–29PubMedCrossRefGoogle Scholar
  44. Hatakeyama T, Kohzaki H, Nagatomo H, Yamasaki N (1994) Purification and characterization of four Ca2+ dependent lectins from the marine invertebrate, Cucumaria echinata. J Biochem 116:209–214PubMedGoogle Scholar
  45. Hatanaka A, Umeda N, Yamashita S, Hirazawa N (2005) A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 131:591–600PubMedCrossRefGoogle Scholar
  46. Hoshi M, Desantis R, Pinto MR, Cotelli F, Rosati F (1985) Sperm glycosidases as mediators of sperm–egg binding in the ascidians. Zool Sci 2:65–69Google Scholar
  47. Hoshi M, Okinaga T, Konati K, Araki T, Chiba K (1991) Acrosome reaction-inducing glycoconjugate in the jelly coat of starfish eggs. In: Baccetti B (ed) Comparative spermatology 20 years after. Raven, New York, pp 175–180Google Scholar
  48. Humbertdavid N, Garrone R (1993) A 6-armed, tenascin-like protein extracted from the Porifera Oscarella tuberculata (Homosclerophorida). Eur J Biochem 216:255–260CrossRefGoogle Scholar
  49. Iijima R, Kisugi J, Yamazaki M (1994) Biopolymers from marine invertebrates.14. Antifungal property of Dolabellanin-A, a putative self-defense molecule of the sea hare, Dolabella auricularia. Biol Pharm Bull 17:1144–1146PubMedGoogle Scholar
  50. Iijima R, Kisugi J, Yamazaki M (1995) Antifungal activity of Aplysianin-E, a cytotoxic protein of sea hare (Aplysia kurodai) eggs. Dev Comp Immunol 19:13–19PubMedCrossRefGoogle Scholar
  51. Im AR, Sim J-S, Park Y, Kim YS, Toshihiko T (2008) Isolation and characterization of chondroitin sulfate from marine organisms. Glycobiology 18:995–996Google Scholar
  52. Imai T, Watanabe T, Yui T, Sugiyama J (2003) The directionality of chitin biosynthesis: a revisit. Biochem J 374:755–760PubMedCrossRefGoogle Scholar
  53. Isbrucker RA, Cummins J, Pomponi SA, Longley RE, Wright AE (2003) Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem Pharmacol 66:75–82PubMedCrossRefGoogle Scholar
  54. Jimbo M, Yanohara T, Kioke K, Kioke K, Sakai R, Muramoto K, Kamiya H (2000) The D-galactose-binding lectin of the octocoral Sinularia lochmodes: characterization and possible relationship to the symbiotic dinoflagellates. Comp Biochem Physiol B 125:227–236PubMedCrossRefGoogle Scholar
  55. Jin T, Qian P (2005) Amino acid exposure modulates the bioactivity of biofilms for larval settlement of Hydroides elegans by altering bacterial community components. Mar Ecol Prog Ser 297:169–179CrossRefGoogle Scholar
  56. Kabakoff B, Lennarz WJ (1990) Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo. J Cell Biol 111:391–400PubMedCrossRefGoogle Scholar
  57. Kari BE, Rottmann WL (1985) Analysis of changes in a yolk glycoprotein complex in the developing sea urchin embryo. Dev Biol 108:18–25PubMedCrossRefGoogle Scholar
  58. Kariya Y, Mulloy B, Imai K, Tominaga A, Kaneko T, Asari A, Suzuki K, Masuda H, Kyogashima IT (2004) Isolation and partial characterisation of fucan sulfates from the body wall of sea cucumber Stichopus japonicas and their ability to inhibit osteoclastogenesis. Carbohydr Res 339:1339–1346PubMedCrossRefGoogle Scholar
  59. Karoumi A, Croisille Y, Croisille F, Meiniel R, Belin MF, Meiniel A (1990) Glycoprotein synthesis in the subcommissural organ of the chick embryo. 2. An immunochemical study. J Neural Transm 80:203–212CrossRefGoogle Scholar
  60. Kawagishi H, Yamawaki M, Isobe S, Usui T, Kimura A, Chiba S (1994) Two lectins from the marine sponge Halichondria okadai—an N-acetyl-sugar-specific lectin (Hol-I) and an N-acetyllactosamine-specific lectin (Hol-Ii). J Biol Chem 269:1375–1379PubMedGoogle Scholar
  61. Kawakami A, Miyamoto T, Higuchi R, Uchiumi T, Kuwano M, Van Soest RWM (2001) Structure of a novel multidrug resistance modulator, irciniasulfonic acid, isolated from a marine sponge, Ircinia sp. Tetrahedron Lett 42:3335–3337CrossRefGoogle Scholar
  62. Kawsar SMA, Fujii Y, Matsumoto R, Ichikawa T, Tateno H, Hirabayashi J, Yasumitsu H, Dogasaki C, Hosono M, Nitta K, Hamako J, Matsui T, Ozeki Y (2008) Isolation, purification, characterisation and glycan-binding profile of a D-galactoside specific lectin from the marine sponge, Halichondria okadai. Comp Biochem Physiol B 150:349–357PubMedCrossRefGoogle Scholar
  63. Kelly LS, Snell TW (1998) Role of surface glycoproteins in mate-guarding of the marine harpacticoid Tigriopus japonicus. Mar Biol 130:605–612CrossRefGoogle Scholar
  64. Khalaila I, Peter-Katalinic J, Tsang C, Radcliffe CM, Aflalo ED, Harvey DJ, Dwek RA, Rudd PM, Sagi A (2004) Structural characterization of the N-glycan moiety and site of glycosylation in vitellogenin from the decapod crustacean Cherax quadricarinatus. Glycobiology 14:767–774PubMedCrossRefGoogle Scholar
  65. Kim SK, Ravichandran YD, Khan SB, Kim YT (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioprocess Eng 13:511–523CrossRefGoogle Scholar
  66. Kisugi J, Ohye H, Kamiya H, Yamazaki M (1992) Biopolymers from marine invertebrates. 13. Characterization of an antibacterial protein, Dolabellanin-A, from the albumin gland of the sea hare, Dolabella auricularia. Chem Pharm Bull 40:1537–1539PubMedGoogle Scholar
  67. Kotani T, Hagiwara A, Snell TW (1997) Genetic variation among marine Brachionus strains and function of mate recognition pheromone (MRP). Hydrobiologia 358:105–112CrossRefGoogle Scholar
  68. Kren V, Martinkova L (2001) Glycosides in medicine: the role of glycosidic residue in biological activity. Curr Med Chem 8:1303–1328PubMedGoogle Scholar
  69. Krőger N, Bergsdorf C, Sumper M (1994) A new calcium-binding glycoprotein family constitutes a major diatom cell wall component. EMBO J 13:4676–4683PubMedGoogle Scholar
  70. Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–856PubMedCrossRefGoogle Scholar
  71. Lam C, Harder T, Qian P (2005) Induction of larval settlement in the polychaete Hydroides elegans by extracellular polymers of benthic diatoms. Mar Ecol Prog Ser 286:145–154CrossRefGoogle Scholar
  72. Lambert CC (1989) Ascidian eggs release glycosidase activity which aids in the block against polyspermy. Development 105:415–420PubMedGoogle Scholar
  73. Le Pape P, Zidane M, Abdala H, More MT (2000) A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol Int 24:51–56PubMedCrossRefGoogle Scholar
  74. Liao WR, Lin JY, Shieh WY, Jeng WL, Huang R (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotech 30:433–439CrossRefGoogle Scholar
  75. Lind JL, Heimann K, Miller EA, vanVliet C, Hoogenraad NJ, Wetherbee R (1997) Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta 203:213–221PubMedCrossRefGoogle Scholar
  76. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Ann Rev Biochem 72:643–691PubMedCrossRefGoogle Scholar
  77. Magnadóttir B, Gudmundsdóttir S, Gudmundsdóttir BK (1997) The carbohydrate moiety of IgM from salmon (Salmo salar L.). Comp Biochem Physiol B 116:423–430CrossRefGoogle Scholar
  78. Magnadóttir B, Crispin M, Royle L, Colominas C, Harvey DJ, Dwek RA, Rudd PM (2002) The carbohydrate moiety of serum IgM from Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol 12:209–227PubMedCrossRefGoogle Scholar
  79. Matsumura K, Mori S, Nagano M, Fusetani N (1998a) Lentil lectin inhibits adult extract-induced settlement of the barnacle, Balanus amphitrite. J Exp Zool 280:213–219CrossRefGoogle Scholar
  80. Matsumura K, Nagano M, Fusetani N (1998b) Purification of a larval settlement-inducing protein complex (SIPC) of the barnacle, Balanus amphitrite. J Exp Biol 281:12–20Google Scholar
  81. Matsumura K, Nagano M, Kato-Yoshinaga Y, Yamazaki M, Clare AS, Fusetani N (1998c) Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proc R Soc Lond Ser B Biol Sci 265:1825–1830CrossRefGoogle Scholar
  82. Matsumura K, Hills JM, Thomason PO, Thomason JC, Clare AS (2000) Discrimination at settlement in barnacles: laboratory and field experiments on settlement behaviour in response to settlement-inducing protein complexes. Biofouling 16:181–190CrossRefGoogle Scholar
  83. McCarren J, Brahamsha B (2005) Transposon mutagenesis in a marine Synechococcus strain: Isolation of swimming motility mutants. J Bacteriol 187:4457–4462PubMedCrossRefGoogle Scholar
  84. McCarren J, Heuser J, Roth R, Yamada N, Martone M, Brahamsha B (2005) Inactivation of swmA results in the loss of an outer cell layer in a swimming Synechococcus strain. J Bacteriol 187:224–230PubMedCrossRefGoogle Scholar
  85. McFadden DW, Riggs DR, Jackson BJ, Vona-Davis L (2003) Keyhole limpet hemocyanin, a novel immune stimulant with promising anticancer activity in Barrett's esophageal adenocarcinoma. Amer J Surg 186:552–555PubMedCrossRefGoogle Scholar
  86. McKenzie JD, Grigovala IV (1996) The echinoderm surface and its role in preventing antifouling. Biofouling 10:261–272CrossRefGoogle Scholar
  87. Meikle P, Richards GN, Yellowlees D (1987) Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem 262:16941–16947PubMedGoogle Scholar
  88. Mengerink KJ, Vacquier VD (2001) Glycobiology of sperm–egg interactions in deuterostomes. Glycobiology 11:37–43CrossRefGoogle Scholar
  89. Michael T, Smith CM (1995) Lectins probe molecular films in biofouling—characterization of early films on nonliving and living surfaces. Mar Ecol Prog Ser 119:229–236CrossRefGoogle Scholar
  90. Morris HR, Dell A, Easton RL, Panico M, Koistinen R, Oehninger S, Patankar MS, Seppala M, Clark GF (1996) Gender-specific glycosylation of human glycodelin affects its contraceptive activity. J Biol Chem 271:32159–32167PubMedCrossRefGoogle Scholar
  91. Mourão PAS (2007) A carbohydrate-based mechanism of species recognition in sea urchin fertilisation. Braz J Med Biol Res 40:5–17PubMedCrossRefGoogle Scholar
  92. Nadanaka S, Clement A, Masayama K, Faissner A, Sugahara K (1998) Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity. J Biol Chem 273:3296–3307PubMedCrossRefGoogle Scholar
  93. Naganuma T, Ogawa T, Hirabayahsi J, Kasai K, Kamiya H, Muramoto K (2006) Isolation, characterisation and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Divers 10:607–618PubMedCrossRefGoogle Scholar
  94. Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27:461–467PubMedCrossRefGoogle Scholar
  95. Olofsson S (1992) Carbohydrates in herpesvirus infections. Apmis 100:84–95Google Scholar
  96. Pahler S, Blumbach B, Muller I, Muller WEG (1998) Putative multiadhesive protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module. J Exp Zool 282:332–343PubMedCrossRefGoogle Scholar
  97. Rademacher T, Parekh R, Dwek R (1988) Glycobiology. Ann Rev Biochem 57:785–838PubMedCrossRefGoogle Scholar
  98. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure–function relationships of glycans. Nat Methods 2:817–824PubMedCrossRefGoogle Scholar
  99. Rashidova SS, Milusheva RY, Voropaeva NL, Pulatova SR, Nikonovich GV, Ruban IN (2004) Isolation of chitin from a variety of raw materials, modification of the material, and interaction its derivatives with metal ions. Chromatographia 59:783–786Google Scholar
  100. RicoMartinez R, Dingmann B, Snell TW (1996) Surface glycoproteins potentially involved in mate recognition in nine freshwater rotifer species. Archiv Für Hydrobiol 138:1–10Google Scholar
  101. Rogers DJ, Hori K (1993) Marine algal lectins—new developments. Hydrobiologia 261:589–593CrossRefGoogle Scholar
  102. Royle L, Campbell MP, Radcliff CM, White DM, Harvey DJ, Abrahams JL, Kim Y-G, Henry GW, Shadwick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12PubMedCrossRefGoogle Scholar
  103. Sangrajrang S, Zidane M, Berda P, More MT, Calvo F, Fellous A (2000) Different microtubule network alterations induced by pachymatismin, a new marine glycoprotein, on two prostatic cell lines. Cancer Chemother, Pharmacol 45:120–126CrossRefGoogle Scholar
  104. Sashiwa H, Aiba S (2004) Chemistry modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908CrossRefGoogle Scholar
  105. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227PubMedCrossRefGoogle Scholar
  106. Seifert GJ, Robert K (2007) The biology of arabinogalactan proteins. Ann Rev Plant Biol 58:137–161CrossRefGoogle Scholar
  107. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53–62CrossRefGoogle Scholar
  108. Smital T, Sauerborn R, Pivcevic B, Krca S, Kurelec B (2000) Interspecies differences in P-glycoprotein mediated activity of multixenobiotic resistance mechanism in several marine and freshwater invertebrates. Comp Biochem Physiol C 126:175–186Google Scholar
  109. Smital T, Sauerborn R, Hackenberger BK (2003) Inducibility of the P-glycoprotein transport activity in the marine mussel Mytilus galloprovincialis and the freshwater mussel Dreissena polymorpha. Aquat Toxicol 65:443–465PubMedGoogle Scholar
  110. Snell TW, Carmona MJ (1994) Surface glycoproteins in copepods—potential signals for mate recognition. Hydrobiologia 293:255–264CrossRefGoogle Scholar
  111. Sullivan CH, Hart JP, Kramer J (1991) The pattern of protein and glycoprotein synthesis in presumptive lens and nonlens ectoderm of the chicken embryo. Rouxs Arch Dev Biol 200:38–44CrossRefGoogle Scholar
  112. Szewzyk U, Holmström C, Wrangstadh M, Samuelsson M-O, Maki JS, Kjelleberg S (1991) Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar Ecol Prog Ser 75:259–265CrossRefGoogle Scholar
  113. Theopold U, Dorian C, Schmidt O (2001) Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. Insect Biochem Mol Biol 31:189–197PubMedCrossRefGoogle Scholar
  114. Thotakura NR, Blithe DL (1995) Glycoprotein hormones—glycobiology of gonadotropins, thyrotropin and free α-subunit. Glycobiology 5:3–10PubMedCrossRefGoogle Scholar
  115. Tian JD, Gong H, Thomsen GH, Lennarz WJ (1997) Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope. J Cell Biol 136:1099–1108PubMedCrossRefGoogle Scholar
  116. Ting JH, Snell TW (2003) Purification and sequencing of a mate-recognition protein from the copepod Tigriopus japonicus. Mar Biol 143:1–8CrossRefGoogle Scholar
  117. Toole BP (2000) Hyaluronan. In: Iozzo RV (ed) Proteoglycans, structure, biology, and molecular interactions. CRC, New York, pp 61–92Google Scholar
  118. Tseneklidou-Stoeter D, Gerwig GJ, Kamerling JP, Spindler KD (1995) Characterisation of N-linked carbohydrate chains of the crayfish. Astacus leptodactylus hemocyanin. Biol Chem Hoppe-Seyler 376:531–537PubMedGoogle Scholar
  119. Tulsiani DRP, YoshidaKomiya H, Araki Y (1997) Mammalian fertilization: a carbohydrate-mediated event. Biol Reprod 57:487–494PubMedCrossRefGoogle Scholar
  120. Ushiyama A, Chiba K, Shima A, Hoshi M (1995) Estimation by radiation inactivation of the minimum functional size of acrosome-reaction-inducing substance (ARIS) in the starfish, Asterias amurensis. Zygote 3:351–355PubMedCrossRefGoogle Scholar
  121. Vacquier VD (1998) Evolution of gamete recognition proteins. Science 281:1995–1998PubMedCrossRefGoogle Scholar
  122. Vacquier VD, Moy GW (1997) The fucose sulfate polymer of egg jelly binds to sperm REJ and is the inducer of the sea urchin sperm acrosome reaction. Dev Biol 192:125–135PubMedCrossRefGoogle Scholar
  123. Vilela-Silva A, Alves AP, Valente AP, Vacquier VD, Mourao PAS (1999) Structure of the sulfated α-L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus: patterns of preferential 2-O and 4-O-sulfation determine sperm cell recognition. Glycobiology 9:927–933PubMedCrossRefGoogle Scholar
  124. Wagner GF, Jaworski EM, Haddad M (1998) Stanniocalcin in the seawater salmon: structure, function, and regulation. Am J Physiol—Regul Integr Comp Physiol 274:1177–1185Google Scholar
  125. Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell–cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435PubMedCrossRefGoogle Scholar
  126. Wikramanayake AH, Clark WH (1994) Two extracellular matrices from oocytes of the marine shrimp Sicyonia ingentis that independently mediate only primary or secondary sperm binding. Dev Growth Differ 36:89–101CrossRefGoogle Scholar
  127. Wu SM, Arnold LL, Rone J, Trivadi M, Chan WY (1999) Effect of pregnancy-specific β1-glycoprotein on the development of preimplantation embryo. Proc Soc Exp Biol Med 220:169–177PubMedCrossRefGoogle Scholar
  128. Xia BY, Kawar ZS, Ju TZ, Alvarez RA, Sachdev GP, Cummings RD (2005) Versatile fluorescent derivatization of glycans for glycomic analysis. Nat Methods 2:845–850PubMedCrossRefGoogle Scholar
  129. Yamazaki M (1993) Antitumor and antimicrobial glycoproteins from sea hares. Comp Biochem Physiol C 105:141–146PubMedCrossRefGoogle Scholar
  130. Zal F, Küster B, Green BN, Harvey DJ, Lallier FH (1998) Partially glucose-capped oligosaccharides are found on the hemoglobins of the deep-sea tube worm Riftia pachyptila. Glycobiology 8:663–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Marine Science and TechnologyNewcastle UniversityClaremont Road Newcastle upon TyneUK

Personalised recommendations