Marine Biotechnology

, Volume 12, Issue 6, pp 696–707

Aspartic Cathepsin D Endopeptidase Contributes to Extracellular Digestion in Clawed Lobsters Homarus americanus and Homarus gammarus

  • Liliana Rojo
  • Adriana Muhlia-Almazan
  • Reinhard Saborowski
  • Fernando García-Carreño
Original Article


Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.


Aspartic protease Cathepsin D Clawed lobster Starvation Protein digestion 


  1. Al-Mohanna SY, Nott JA (1987) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zjang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Aoki H, Nazmul Ahsan M, Shugo W (2003) Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B Biochem Mol Biol 134:681–694PubMedCrossRefGoogle Scholar
  4. Aoki H, Ahsan M, Watabe S (2004) Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis). J Comp Physiol B-Biochem Syst Environ Physiol 174:59–69CrossRefGoogle Scholar
  5. Baker PL, Gibson R (1977) Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus. J Exp Mar Biol Ecol 26:297–324CrossRefGoogle Scholar
  6. Barrett AJ (1979) Cathepsin D: the lysosomal aspartic proteinase. Ciba Found Symp 79:37–50Google Scholar
  7. Barrett AJ (1998) Cathepsin D: the lysosomal aspartic proteinase. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, San Diego, pp 37–50Google Scholar
  8. Barrett AJ, Rawlings ND, Woessner JF (1998) Proteolytic enzymes. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, San Diego, pp 801–805Google Scholar
  9. Becker MM, Harrop SA, Dalton JP, Kalinna BH, McManus DP, Brindley PJ (1995) Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. J Biol Chem 270:24496–24501PubMedCrossRefGoogle Scholar
  10. Boldbaatar D, Sikasunge CS, Battsetseg B, Xuan X, Fujisaki K (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 36:25–36PubMedCrossRefGoogle Scholar
  11. Brockerhoff H, Hoyle RJ, Hwang PC (1970) Digestive enzymes in the American lobster (Homarus americanus). J Fish Res Board Can 27:1357–1370Google Scholar
  12. Carginale V, Trinchella F, Capasso R, Parisia E (2004) Gene amplification and cold adaptation of pepsin in Antarctic fish: a possible strategy for food digestion at low temperature. Gene 336:195–205PubMedCrossRefGoogle Scholar
  13. Coates L, Tuan H-F, Tomanicek S, Kovalevsky A, Mustyakimov M, Erskine P, Cooper J (2008) The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction. J Am Chem Soc 130:7235–7237PubMedCrossRefGoogle Scholar
  14. Cobb JS, Phillips BF (1980) The biology and management of lobsters. Academic, New YorkGoogle Scholar
  15. Cho WL, Raikhel AS (1992) Cloning of cDNA for mosquito lysosomal aspartic protease. J Biol Chem 267:21823–21829PubMedGoogle Scholar
  16. Crossin G, Al-Ayoub SA, Jury SH, Huntting H, Watson WH III (1998) Behavioral thermoregulation in the American lobster Homarus americanus. J Exp Biol 201:365–374PubMedGoogle Scholar
  17. Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215PubMedCrossRefGoogle Scholar
  18. Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Marine Biotechnology I 96:189–218CrossRefGoogle Scholar
  19. Delcroix M, Sajid M, Caffrey C, Lim K, Jan D, Hsieh I, Bahgat M, Dissous C, McKerrow J (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 281:39316–39329PubMedCrossRefGoogle Scholar
  20. Factor JR, Naar M (1990) The digestive system of the lobster, Homarus americanus: II. Terminal hepatic arterioles of the digestive gland. J Morphol 206:283–291CrossRefGoogle Scholar
  21. Faust PL, Kornfeld S, Chirgwin JM (1985) Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 82:4910–4914PubMedCrossRefGoogle Scholar
  22. Feller G, Gerday C (1997) Review, psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841PubMedCrossRefGoogle Scholar
  23. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  24. Fusek M, Větvička V (2005) Dual role of cathepsin D: ligand and protease. Biomed Papers 149:43–50Google Scholar
  25. Galgani F, Benyamin Y, van Wormhoudt A (1985) Purification, properties and immunoassay of trypsin from Penaeus japonicus. Comp Biochem Physiol B 81:447–452CrossRefGoogle Scholar
  26. García-Carreño FL, Dimes LE, Haard N (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases of proteinaceous proteinase inhibitor. Anal Biochem 214:65–69PubMedCrossRefGoogle Scholar
  27. Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107PubMedCrossRefGoogle Scholar
  28. Gierasch LM (1989) Signal sequences. Biochemistry 28:923–930PubMedCrossRefGoogle Scholar
  29. Glass HJ, Stark JR (1994) Protein digestion in the European lobster, Homarus gammarus (L.). Comp Biochem Physiol 108B:225–235Google Scholar
  30. Gudmundsdóttir Á, Pálsdóttir HM (2005) Atlantic cod trypsins: from basic research to practical applications. Mar Biotechnol 7:77–88PubMedCrossRefGoogle Scholar
  31. Gui Z, Lee K, Kim B, Choi Y, Wei Y, Choo Y, Kang P, Yoon H, Kim I, Je Y, Seo S, Lee S, Guo X, Sohn H, Jin B (2006) Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC Dev Biol 6:49PubMedCrossRefGoogle Scholar
  32. Haard NF (1991) A review of proteolytic enzymes from marine organisms and their application in the food industry. J Aquat Food Prod Technol 1:17–35CrossRefGoogle Scholar
  33. Hamilton KA, Nisbet AJ, Lehane MJ, Taylor MA, Billingsley PF (2003) A physiological and biochemical model for digestion in the ectoparasitic mite, Psoroptes ovis (Acari: Psoroptidae). Int J Parasitol 33:773–785PubMedCrossRefGoogle Scholar
  34. Harrop SA, Prociv P, Brindley PJ (1996) Acasp, a gene encoding a cathepsin D-like aspartic protease from the hookworm Ancylostoma caninum. Biochem Biophys Res Commun 227:294–302PubMedCrossRefGoogle Scholar
  35. Hernández-Cortés P, Whitaker JR, García-Carreño FL (1997) Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea:Decapoda). J Food Biochem 21:497–514CrossRefGoogle Scholar
  36. Hernández-Cortés P, Cerenius L, García-Carreño FL, Soderhal K (1999) Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. Biol Chem 380:499–501PubMedCrossRefGoogle Scholar
  37. Hoyle RJ (1973) Digestive enzyme secretion after dietary in the American lobster (Homarus americanus). J Fish Res Board Can 30:1647–1653Google Scholar
  38. Hu KJ (2003) Molecular cloning and characterization of the cathepsin L gene from the marine shrimp Metapenaeus ensis. The University of Hong Kong, ChinaGoogle Scholar
  39. Hu KJ, Leung PSC (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol 146B:69–80Google Scholar
  40. Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59:288–306PubMedCrossRefGoogle Scholar
  41. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351PubMedCrossRefGoogle Scholar
  42. Laycock MV, Hirama T, Hasnain S, Watson D, Storer A (1989) Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus). Biochem J 263:439–444PubMedGoogle Scholar
  43. Laycock MV, MacKay RM, Di Fruscio M, Gallant JW (1991) Molecular cloning of three cDNAs that encode cysteine proteinases in the digestive gland of the American lobster (Homarus americanus). FEBS Lett 292:115–120PubMedCrossRefGoogle Scholar
  44. Le Boulay C, Sellos D, Van Wormhoudt A (1998) Cathepsin L gene organization in crustaceans. Gene 218:77–84PubMedCrossRefGoogle Scholar
  45. Lehnert SH, Johnson SE (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the black tiger shrimp Penaeus monodon. Comp Biochem Physiol 133B:163–171Google Scholar
  46. Leiros HK, Willassen NP, Smalås AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049PubMedCrossRefGoogle Scholar
  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {{2}^{ - \Delta \Delta {\rm{CT}}}} \) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  48. Mikami S, Takashima F (2000) Functional morphology of the digestive system. In: Phillips BF, Kittaka J (eds) Spiny lobsters: fisheries and culture. Blackwell, London, pp 601–610CrossRefGoogle Scholar
  49. Minarowska A, Gacko M, Karwowska A, Minarowski Ł (2008) Human cathepsin D. Folia Histochem Cytobiol 46:23–38PubMedCrossRefGoogle Scholar
  50. Muhlia-Almazán A, García-Carreño FL (2003) Digestion physiology and proteolytic enzymes of crustacean species of the Mexican Pacific Ocean. In: Hendrickx ME (ed) Contributions to the study of east Pacific crustaceans 2. UNAM, Mexico City, pp 77–91Google Scholar
  51. Mukhin V, Smirnova E, Novikov V (2007) Peculiarities of digestive function of proteinases in invertebrates—inhabitants of cold seas. J Evol Biochem Physiol 43:476–482CrossRefGoogle Scholar
  52. Nakao Y, Kozutsumi Y, Kawasaki T, Yamashina I, Van Halbeek H, Vliegenthart JFG (1984) Oligosaccharides on cathepsin D from porcine spleen. Arch Biochem Biophys 228:43–54CrossRefGoogle Scholar
  53. Navarrete del Toro MA, García-Carreño FL, Díaz LM, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645–654CrossRefGoogle Scholar
  54. Neurath H (1984) Evolution of proteolytic enzymes. Science 224:350–357PubMedCrossRefGoogle Scholar
  55. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6PubMedCrossRefGoogle Scholar
  56. Omondi J, Stark JR (2001) Studies on digestive proteases from midgut glands of a shrimp, Penaeus indicus, and a lobster, Nephrops norvegicus. Appl Biochem Biotechnol 90:137–153PubMedCrossRefGoogle Scholar
  57. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:321–326CrossRefGoogle Scholar
  58. Salem M, Silverstein J, Rexroad CE, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). Genomics 8:328PubMedCrossRefGoogle Scholar
  59. Sánchez-Paz JA, García-Carreño FL, Muhlia-Almazán A, Hernández-Saavedra N, Yepiz-Plascencia G (2003) Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J Exp Mar Biol Ecol 292:1–17CrossRefGoogle Scholar
  60. Sánchez-Paz A, García-Carreño F, Muhlia-Almazán A, Peregrino-Uriarte AB, Hernández-López J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36:241–249PubMedCrossRefGoogle Scholar
  61. Sánchez-Paz A, García-Carreño FL, Hernández-López J, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J Exp Mar Biol Ecol 340:184–193CrossRefGoogle Scholar
  62. Schäfer T, Kirk O, Borchert TV, Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R, Lund H (2005) Enzymes for technical applications. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley-VCH, Weinheim, pp 557–618Google Scholar
  63. Shahidi F, Janak Kamil YVA (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol 12:435–464CrossRefGoogle Scholar
  64. Shewale JG, Tang J (1984) Amino acid sequence of porcine spleen cathepsin D. Proc Natl Acad Sci USA 81:3703–3707PubMedCrossRefGoogle Scholar
  65. Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Cold adaption of enzymes: structural comparison between salmon and bovine trypsins. Protein Struct Funct Genet 20:149–166CrossRefGoogle Scholar
  66. Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey C, Mares M, Kopacek P (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 1:7PubMedGoogle Scholar
  67. Takahashi T, Schmidt PG, Tang J (1983) Oligosaccharide units of lysosomal cathepsin D from porcine spleen. Amino acid sequence and carbohydrate structure of the glycopeptides. J Biol Chem 258:2819–2830PubMedGoogle Scholar
  68. Tang J, Wong RNS (1987) Evolution in the structure and function of aspartic proteases. J Cell Biochem 33:53–63PubMedCrossRefGoogle Scholar
  69. Terova G, Rimoldi S, Larghi S, Bernardini G, Gornati R, Saroglia M (2007) Regulation of progastrics in mRNA levels in sea bass (Dicentrarchus labrax) in response to fluctuations in food availability. Biochem Biophys Res Commun 363:591–596PubMedCrossRefGoogle Scholar
  70. Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 315:213–299CrossRefGoogle Scholar
  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680PubMedCrossRefGoogle Scholar
  72. Titani K, Torff HJ, Hormel S, Kumar S, Walsh KA, Rodl J, Neurath H, Zwilling R (1987) Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26:222–226PubMedCrossRefGoogle Scholar
  73. Towatari T, Miyamura T, Kondo A, Kato I, Inoue M, Yano M, Kido H (1998) The structures of asparagine-linked oligosaccharides of rat liver cathepsin L reflect the substrate specificity of lysosomal α-mannosidase. Eur J Biochem 256:163–169PubMedCrossRefGoogle Scholar
  74. von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201CrossRefGoogle Scholar
  75. Yonezawa S, Takahashi T, Wang X, Wong R, Hartsuck J, Tang J (1988) Structures at the proteolytic processing region of cathepsin D. J Biol Chem 263:16604–16611Google Scholar
  76. Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  77. Zwilling R, Stöcker W (1997) The astacins: structure and function of a new protein family. Dr Kovac Verlag, HamburgGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Liliana Rojo
    • 1
  • Adriana Muhlia-Almazan
    • 2
  • Reinhard Saborowski
    • 3
  • Fernando García-Carreño
    • 1
  1. 1.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  2. 2.Centro de Investigación en Alimentación y Desarrollo (CIAD)HermosilloMexico
  3. 3.Alfred-Wegener-Institute für Polar- und Meeresforschung (AWI)Biologische Anstalt HelgolandHelgolandGermany

Personalised recommendations