Marine Biotechnology

, Volume 12, Issue 4, pp 410–429 | Cite as

A MicroRNA Repertoire for Functional Genome Research in Rainbow Trout (Oncorhynchus mykiss)

  • Mohamed Salem
  • Caide Xiao
  • Jonah Womack
  • Caird E. RexroadIII
  • Jianbo YaoEmail author
Original Article


MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. miRNAs are most often identified through computational prediction from genome sequences. The rainbow trout genome sequence is not available yet, which does not allow miRNA prediction for this species which is of great economic interest for aquaculture and sport fisheries, and is a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. To identify miRNAs from rainbow trout, we constructed a miRNA library from a pool of nine somatic tissues. Analysis of the library identified 210 unique sequences representing 54 distinct miRNAs; 50 with conserved sequences matching previously identified miRNAs and four novel miRNAs. In addition, 13 miRNAs were computationally predicted from the rainbow trout transcriptome. Real-time PCR was used to measure miRNA expression patterns in adult somatic tissues and unfertilized eggs. The majority of the miRNAs showed characteristic tissue-specific expression patterns suggesting potential roles in maintaining tissue identity. Potential miRNA-target interactions were computationally predicted and single nucleotide polymorphisms (SNPs) were identified in the miRNAs and their target sites in the rainbow trout transcripts. The rainbow trout miRNAs identified and characterized in this study provide a new tool for functional genome research in salmonids. Tissue-specific miRNAs may serve as molecular markers, predictive of specific functional and diagnostic implications. The data on genetic polymorphisms in miRNA-target interactions is particularly useful for rainbow trout breeding programs.


MicroRNA Non-coding RNA Rainbow trout Functional genomics 



This project was supported by National Research Initiative Competitive Grant No.2007-35205-17914 from the USDA Cooperative State Research, Education, and Extension Service; and USDA-ARS Cooperative Agreement No. 58-1930-5-537. It is published with the approval of the Director of the West Virginia Agriculture and Forestry Experiment Station as scientific paper No. 3049.


  1. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290CrossRefPubMedGoogle Scholar
  2. Allendorf FW, Thorgaard G (1984) Tetraploidy and the evolution of salmonid fishes. Evolutionary genetics of fishes. Plenum Press, New York, pp 1–45Google Scholar
  3. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. Rna 9:277–279CrossRefPubMedGoogle Scholar
  4. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 103:14385–14389CrossRefPubMedGoogle Scholar
  5. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673CrossRefPubMedGoogle Scholar
  6. Bailey GS, Poulter RT, Stockwell PA (1978) Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci U S A 75:5575–5579CrossRefPubMedGoogle Scholar
  7. Barnes MR, Deharo S, Grocock RJ, Brown JR, Sanseau P (2007) The micro RNA target paradigm: a fundamental and polymorphic control layer of cellular expression. Exp Opin Biol Ther 7:1387–1399CrossRefGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  9. Begemann G (2008) MicroRNAs and RNA interference in zebrafish development. Zebrafish 5:111–119CrossRefPubMedGoogle Scholar
  10. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770CrossRefPubMedGoogle Scholar
  11. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377CrossRefPubMedGoogle Scholar
  12. Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, Natt F, Dengler U, Hall J, Filipowicz W, Weiler J (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52CrossRefPubMedGoogle Scholar
  13. Bicker S, Schratt G (2008) MicroRNAs: Tiny regulators of synapse function in development and disease. J Cell Mol Med 12:1466–1476CrossRefPubMedGoogle Scholar
  14. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85CrossRefPubMedGoogle Scholar
  15. Brown JR, Sanseau P (2005) A computational view of microRNAs and their targets. Drug Discov Today 10:595–601CrossRefPubMedGoogle Scholar
  16. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033CrossRefPubMedGoogle Scholar
  17. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113PubMedGoogle Scholar
  18. Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38:1452–1456CrossRefPubMedGoogle Scholar
  19. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288–1293CrossRefPubMedGoogle Scholar
  20. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233CrossRefPubMedGoogle Scholar
  21. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949CrossRefPubMedGoogle Scholar
  22. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818CrossRefPubMedGoogle Scholar
  23. Coutinho LL, Matukumalli LK, Sonstegard TS, Van Tassell CP, Gasbarre LC, Capuco AV, Smith TP (2007) Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol Genomics 29:35–43PubMedGoogle Scholar
  24. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442CrossRefPubMedGoogle Scholar
  25. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98CrossRefPubMedGoogle Scholar
  26. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378:492–504CrossRefPubMedGoogle Scholar
  27. Georges M, Clop A, Marcq F, Takeda H, Pirottin D, Hiard S, Tordoir X, Caiment F, Meish F, Bibe B, Bouix J, Elsen JM, Eychenne F, Laville E, Larzul C, Milenkovic D, Tobin J, Charlier AC (2006) Polymorphic microRNA-target interactions: a novel source of phenotypic variation. Cold Spring Harb Symp Quant Biol 71:343–350CrossRefPubMedGoogle Scholar
  28. Ghosh Z, Chakrabarti J, Mallick B (2007) miRNomics-The bioinformatics of microRNA genes. Biochem Biophys Res Commun 363:6–11CrossRefPubMedGoogle Scholar
  29. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240CrossRefPubMedGoogle Scholar
  30. Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13CrossRefPubMedGoogle Scholar
  31. Gu Z, Eleswarapu S, Jiang H (2007) Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett 581:981–988CrossRefPubMedGoogle Scholar
  32. Ibanez-Ventoso C, Vora M, Driscoll M (2008) Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS ONE 3:e2818CrossRefPubMedGoogle Scholar
  33. Jerome T, Laurie P, Louis B, Pierre C (2007) Enjoy the silence: the story of let-7 MicroRNA and cancer. Curr Genomics 8:229–233CrossRefPubMedGoogle Scholar
  34. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363CrossRefPubMedGoogle Scholar
  35. Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411CrossRefPubMedGoogle Scholar
  36. Kloosterman WP, Steiner FA, Berezikov E, de Bruijn E, van de Belt J, Verheul M, Cuppen E, Plasterk RH (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res 34:2558–2569CrossRefPubMedGoogle Scholar
  37. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMedGoogle Scholar
  38. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739CrossRefPubMedGoogle Scholar
  39. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414CrossRefPubMedGoogle Scholar
  40. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862CrossRefPubMedGoogle Scholar
  41. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560CrossRefPubMedGoogle Scholar
  42. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  43. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  44. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166CrossRefPubMedGoogle Scholar
  45. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203CrossRefPubMedGoogle Scholar
  46. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMedGoogle Scholar
  47. Mtango NR, Potireddy S, Latham KE (2008) Expression of microRNA processing machinery genes in rhesus monkey oocytes and embryos of different developmental potentials. Mol Reprod Dev 76:255–269CrossRefGoogle Scholar
  48. Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181:1055–1063CrossRefPubMedGoogle Scholar
  49. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMedGoogle Scholar
  50. Ramachandra RK, Salem M, Gahr S, Rexroad CE 3rd, Yao J (2008) Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their expression during early embryonic development. BMC Dev Biol 8:41CrossRefPubMedGoogle Scholar
  51. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154CrossRefPubMedGoogle Scholar
  52. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910CrossRefPubMedGoogle Scholar
  53. Salem M, Silverstein J, Rexroad CE 3rd, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 8:328CrossRefPubMedGoogle Scholar
  54. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104:3300–3305CrossRefPubMedGoogle Scholar
  55. Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E (2005) An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11:1461–1470CrossRefPubMedGoogle Scholar
  56. Simon-Mateo C, Garcia JA (2006) MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436CrossRefPubMedGoogle Scholar
  57. Smalheiser NR (2003) EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol 4:403CrossRefPubMedGoogle Scholar
  58. Solomon A, Mian Y, Ortega-Cava C, Liu VW, Gurumurthy CB, Naramura M, Band V, Band H (2008) Upregulation of the let-7 microRNA with precocious development in lin-12/Notch hypermorphic Caenorhabditis elegans mutants. Dev Biol 316:191–199CrossRefPubMedGoogle Scholar
  59. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498CrossRefPubMedGoogle Scholar
  60. Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, Walsh PJ, Vijayan MM, Devlin RH, Hardy RW, Overturf KE, Young WP, Robison BD, Rexroad C, Palti Y (2002) Status and opportunities for genomics research with rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 133:609–646CrossRefPubMedGoogle Scholar
  61. Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N, Imai H (2005) Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 579:318–324CrossRefPubMedGoogle Scholar
  62. Whitehead A, Crawford DL (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol 6:R13–R13CrossRefPubMedGoogle Scholar
  63. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911–5922CrossRefPubMedGoogle Scholar
  64. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345CrossRefPubMedGoogle Scholar
  65. Yang M, Lee JE, Padgett RW, Edery I (2008) Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9:83CrossRefPubMedGoogle Scholar
  66. Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L). Genome Biol 8:R96CrossRefPubMedGoogle Scholar
  67. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596CrossRefPubMedGoogle Scholar
  68. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66CrossRefPubMedGoogle Scholar
  69. Ying SY, Lin SL (2005) Intronic microRNAs. Biochem Biophys Res Commun 326:515–520CrossRefPubMedGoogle Scholar
  70. Yoon S, De Micheli G (2005) Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics 21(Suppl 2):ii93–ii100CrossRefPubMedGoogle Scholar
  71. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16CrossRefPubMedGoogle Scholar
  72. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohamed Salem
    • 1
  • Caide Xiao
    • 1
  • Jonah Womack
    • 1
  • Caird E. RexroadIII
    • 2
  • Jianbo Yao
    • 1
    Email author
  1. 1.Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional SciencesWest Virginia UniversityMorgantownUSA
  2. 2.National Center for Cool and Cold Water AquacultureKearneysvilleUSA

Personalised recommendations