Marine Biotechnology

, Volume 12, Issue 3, pp 282–291 | Cite as

Identification of Immune Genes of the Agamaki Clam (Sinonovacula constricta) by Sequencing and Bioinformatic Analysis of ESTs

  • Bingbing Feng
  • Lingli Dong
  • Donghong Niu
  • Shanshan Meng
  • Bing Zhang
  • Dabo Liu
  • Songnian HuEmail author
  • Jiale LiEmail author
Original Article


The Agamaki clam (Sinonovacula constricta) is an economically important shellfish in Asia. However, genomic research on this species is still in its infancy, and genomic resources are largely unavailable. The objective of this study was to generate expressed sequence tags (ESTs) from a normalized liver complementary DNA library and to identify genes that function in immune defense. A total of 5,296 ESTs were sequenced, from which 540 contigs and 3,473 singletons were identified. BLAST homology analysis indicated that only 20.7% of these ESTs were homologues of known genes while the remaining 79.3% appeared to be novel sequences. Based on sequence similarities, 43 putative immune genes were identified that encode proteases and protease inhibitors, adhesive proteins, stress proteins, lysosomal enzymes, and signal transduction regulators. Our study thus provides both a large collection of novel transcripts and a detailed annotation of immune genes for an important bivalve species.


Sinonovacula constricta cDNA library Expressed sequence tags (ESTs) Immune gene 



This study was supported by grants from “863” Hi-tech research and development program of China (2006 AA10 A410) and Shanghai Leading Academic Discipline Project (Y1101).


  1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656CrossRefPubMedGoogle Scholar
  2. Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EE et al (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377(6547 Suppl):3–174PubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedGoogle Scholar
  6. Bai ZY, Yin YX, Hu SN, Wang GL, Zhang XW, Li JL (2009) Identification of genes involved in immune response, microsatellite, and SNP markers from expressed sequence tags generated from hemocytes of freshwater pearl mussel (Hyriopsis cumingii). Mar Biotechnol 11:520–530CrossRefPubMedGoogle Scholar
  7. Beck G, Ellis TW, Habicht GS, Schluter SF, Marchalonis JJ (2002) Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev Comp Immunol 26:11–26CrossRefPubMedGoogle Scholar
  8. Birnboin HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523CrossRefGoogle Scholar
  9. Boutet I, Tanguy A, Moraga D (2004) Characterisation and expression of four mRNA sequences encoding glutathione S-transferases pi, mu, omega and sigma classes in the Pacific oyster Crassostrea gigas exposed to hydrocarbons and pesticides. Mar Biol 146:53–64CrossRefGoogle Scholar
  10. Boutet I, Moraga D, Marinovic L, Obreque J, Chavez-Crooker P (2008) Characterization of reproduction-specific genes in a marine bivalve mollusc: Influence of maturation stage and sex on mRNA expression. Gene 407:130–138CrossRefPubMedGoogle Scholar
  11. Cheng W, Hsiao IS, Hsu CH, Chen JC (2004) Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17:235–243CrossRefPubMedGoogle Scholar
  12. Contreras-Vergara CA, Harris-Valle C, Sotelo-Mundo RR, Yepiz-Plascencia G (2004) A mu-class glutathione S-transferase from the marine shrimp Litopenaeus vannamei: molecular cloning and active-site structural modeling. J Biochem Molec Toxicol 18:245–252CrossRefGoogle Scholar
  13. Ewing B, Hillier L, Wendl MC, Green P (1998a) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185Google Scholar
  14. Ewing B, Hillier LD, Wendl MC, Green P (1998b) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194Google Scholar
  15. Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23:149–169CrossRefPubMedGoogle Scholar
  16. Gong NP, Ma ZJ, Li Q, Li Q, Yan ZG, Xie LP, Zhang RQ (2008) Characterization of calcium deposition and shell matrix protein secretion in primary mantle tissue culture from the marine pearl oyster Pinctada fucata. Mar Biotechnol 10:457–465CrossRefPubMedGoogle Scholar
  17. Gueguen Y, Cadoret JP, Flament D, Barreau-Roumiguière C, Girardot AL, Garnier J, Hoareau A, Bachère E, Escoubas JM (2003) Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303:139–145CrossRefPubMedGoogle Scholar
  18. Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452:571–579CrossRefPubMedGoogle Scholar
  19. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88CrossRefPubMedGoogle Scholar
  20. Hedgecock D, Gaffney PM, Goulletquer P, Guo XM, Reece K, Warr GW (2005) The case for sequencing the oyster genome. J Shellfish Res 24:429–442Google Scholar
  21. Ish-Horowicz D, Burke JF (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res 9:2989–2998CrossRefPubMedGoogle Scholar
  22. Jenny MJ, Ringwood AH, Lacy ER, Lewitus AJ, Kempton JW, Gross PS, Warr GW, Chapman RW (2002) Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the eastern oyster, Crassostrea virginica. Mar Biotechnol 4:81–93CrossRefPubMedGoogle Scholar
  23. Kang YS, Kim YM, Park KI, Kim Cho SK, Choi KS, Cho M (2006) Analysis of EST and lectin expressions in hemocytes of Manila clams (Ruditapes philippinarum) (Bivalvia: Mollusca) infected with Perkinsus olseni. Dev Comp Immunol 30:1119–1131CrossRefPubMedGoogle Scholar
  24. Medzhitov R, Janeway CJ (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97CrossRefPubMedGoogle Scholar
  25. Myrnes B, Nilsen IW (2007) Glutathione S-transferase from the lcelandic scallop (Chlamys islandica): isolation and partial characterization. Comp Biochem Physiol 144:403–407Google Scholar
  26. Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC (2005) Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 22:33–47CrossRefPubMedGoogle Scholar
  27. Nilsen IW, Øverbø K, Sandsdalen E, Sandaker E, Sletten K, Myrnes K (1999) Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett 464:153–158CrossRefPubMedGoogle Scholar
  28. Niu DH, Li JL, Wang GL, Jiang ZY, Zhang WB, Shen YB, Feng BB (2007) The genetic diversity of mitochondrial 16 S rRNA gene fragment in six populations of Sinonovacula constricta. Journal of Shanghai Fisheries University 16:1–6Google Scholar
  29. Niu DH, Li JL, Liu DB (2008a) Polymorphic microsatellite loci for population studies of the razor clam, Sinonovacula constricta. Conserv Genet 9:1393–1394CrossRefGoogle Scholar
  30. Niu DH, Li JL, Shen HD, Jiang ZY (2008b) Sequence variability of mitochondrial DNA-COI gene fragment and population genetic structure of six Sinonovacula constricta populations. Acta Ocean Sin 30:109–116Google Scholar
  31. Niu DH, Li JL, Zheng RL (2008c) Isolation and Sequence Characterization of Microsatellite DNA in Razor Clam (Sinonovacula constricta). Periodical of Ocean University of China 38:733–738Google Scholar
  32. Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723CrossRefPubMedGoogle Scholar
  33. Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K (1992) Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2:173–179CrossRefPubMedGoogle Scholar
  34. Peatman EJ, Wei X, Feng J, Liu L, Kukuktas H, Li P, He C, Rouse D, Wallace R, Dunhan R et al (2004) Development of expressed sequence tags (ESTs) from eastern oyster (Crassostrea virginica): lessons learned from previous efforts. Mar Biotechnol 6:S491–S496Google Scholar
  35. Quilang J, Wang SL, Li P, Abernathy J, Peatman E, Wang YP, Wang LL, Shi YH, Wallace R, Guo XM, Liu ZJ (2007) Generation and analysis of ESTs from the eastern oyster. Crassostrea virginica Gmelin and identification of microsatellite and SNP markers. BMC Genomics 8:157CrossRefPubMedGoogle Scholar
  36. Reusch TBH, Veron AS, Preuss C, Weiner J, Wissler L, Beck A, Klages S, Kube M, Reinhardt R, Bornberg-Bauer E (2008) Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress. Mar Biotechnol 10:297–309CrossRefPubMedGoogle Scholar
  37. Rhee JS, Raisuddin S, Hwang DS, Horiguchi T, Cho HS, Lee JS (2008) A Mu-class glutathione S-transferase (GSTM) from the rock shell Thais clavigera. Comp Biochem Physiol C Comp Pharmacol Toxicol 148:195–203CrossRefGoogle Scholar
  38. Roberts SB, Goetz FW (2003) Expressed sequence tag analysis of genes expressed in the bay scallop, Argopecten irradians. Biol Bull 205:227–228CrossRefPubMedGoogle Scholar
  39. Roberts S, Goetz G, White S, Goetz F (2009) Analysis of genes isolated from plated hemocytes of the Pacific oyster, Crassostreas gigas. Mar Biotechnol 11:24–44CrossRefPubMedGoogle Scholar
  40. Saavedra C, Bachère E (2006) Bivalve genomics. Aquaculture 256:1–14CrossRefGoogle Scholar
  41. Sarropoulou E, Nousdili D, Magoulas A, Kotoulas G (2008) Linking the genomes of nonmodel teleosts through comparative genomics. Mar Biotechnol 10:227–233CrossRefPubMedGoogle Scholar
  42. Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes. J Immunol 156:593–602PubMedGoogle Scholar
  43. Song LS, Xu W, Li CH, Li HL, Wu LT, Xiang JH, Guo XM (2006) Development of expressed sequence tags from the bay scallop, Argopecten irradians irradians. Mar Biotechnol 6:713–728Google Scholar
  44. Suzuki T, Shin IT, Kohara Y, Kasahara M (2004) Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. Dev Comp Immunol 28:993–1003CrossRefPubMedGoogle Scholar
  45. Tanguy A, Guo XM, Ford SE (2004) Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338:121–131CrossRefPubMedGoogle Scholar
  46. Tanguy A, Bierne N, Saavedra C, Pina B, Bachère E, Kube M, Bazin E, Bonhomme F et al (2008) Increasing genomic information in bivalves through new EST collections in four species: development of new genetic markers for environmental studies and genome evolution. Gene 408:27–36CrossRefPubMedGoogle Scholar
  47. von Schalburg KR, Leong J, Cooper GA, Robb A, Beetz-Sargent MR, Lieph R, Holt RA, Moore R, Ewart KV, Driedzic WR, ten Hallers BFH, Zhu B, de Jong PJ, Davidson WS, Koop BF (2008) Rainbow smelt (Osmerus mordax) genomic library and EST resources. Mar Biotechnol 10:487–491CrossRefGoogle Scholar
  48. Wang RC, Zheng XD (2004) Progress of marine shellfishes culture in China and its prospect. Periodical of Ocean University of China 34:775–780Google Scholar
  49. Wynne JW, O'Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG (2008) Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. Mar Biotechnol 10:338–403CrossRefGoogle Scholar
  50. Yu J, Farjo R, Macnee SP, Baehr W, Stambolian DE, Swaroop A (2003) Annotation and analysis of 10, 000 expressed sequence tags from developing mouse eye and adult retina. Genome Biol 4:R65CrossRefPubMedGoogle Scholar
  51. Zhang B, Jin W, Zeng Y, Su ZX, Hu SN, Yu J (2004) EST-based analysis of gene expression in the porcine brain. Genomics Proteomics Bioinformatics 2:237–244PubMedGoogle Scholar
  52. Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848CrossRefPubMedGoogle Scholar
  53. Zheng MG, Sun XQ, Zhang JX (2007) Construction of cDNA library of liver and kidney from abalone (Haliotis discus Hannai) and preliminary analysis of immune gene. High Technol Lett 17:319–324Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bingbing Feng
    • 1
  • Lingli Dong
    • 2
  • Donghong Niu
    • 1
  • Shanshan Meng
    • 2
  • Bing Zhang
    • 2
  • Dabo Liu
    • 1
  • Songnian Hu
    • 2
    Email author
  • Jiale Li
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Exploration and Utilization of Aquatic Genetic ResourcesMinistry of Education, Shanghai Ocean UniversityShanghaiChina
  2. 2.Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  3. 3.Division of Aquaculture, E-Institute of Shanghai UniversitiesShanghai Ocean UniversityShanghaiChina

Personalised recommendations