Marine Biotechnology

, 11:748 | Cite as

Myxinidin, A Novel Antimicrobial Peptide from the Epidermal Mucus of Hagfish, Myxine glutinosa L.

  • Sangeetha Subramanian
  • Neil W. Ross
  • Shawna L. MacKinnon
Original Article


Fish epidermal mucus contains innate immune components that provide a first line of defense against various infectious pathogens. This study reports the bioassay-guided fractionation and characterization of a novel antimicrobial peptide, myxinidin, from the acidic epidermal mucus extract of hagfish (Myxine glutinosa L.). Edman sequencing and mass spectrometry revealed that myxinidin consists of 12 amino acids and has a molecular mass of 1,327.68 Da. Myxinidin showed activity against a broad range of bacteria and yeast pathogens at minimum bactericidal concentration (MBC) ranging from 1.0 to 10.0 µg/mL. Screened pathogens, Salmonella enterica serovar Typhimurium C610, Escherichia coli D31, Aeromonas salmonicida A449, Yersinia ruckeri 96-4, and Listonella anguillarum 02-11 were found to be highly sensitive to myxinidin at the MBC of 1.0–2.5 µg/mL; Staphylococcus epidermis C621 and yeast (Candida albicans C627) had an MBC of 10.0 µg/mL. The antimicrobial activity of myxinidin was found to be two to 16 times more active than a potent fish-derived antimicrobial peptide, pleurocidin (NRC-17), against most of the screened pathogens. The microbicidal activity of myxinidin was retained in the presence of sodium chloride (NaCl) at concentrations up to 0.3 M and had no hemolytic activity against mammalian red blood cells. These results suggest that myxinidin may have potential applications in fish and human therapeutics.


Mucus Antimicrobial peptide Innate immunity Hagfish Myxinidin 



The authors would like to thank Mr. Eric MacKinnon (Cape Sable Island, NS) for providing the hagfishes; Ron Melanson for the help with sampling; Cheryl Craft and Dr. Roger Ebanks for assisting in the mucus extraction and antimicrobial assays used in this study; Elden Rowland for the assisting in the mass spectrometric analysis; and Drs. K. Vanya Ewart, Stewart Johnson, and Susan E. Douglas for providing the bacterial cultures. This research was funded by the National Research Council Canada and the Ford Foundation International Fellowship Program.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Aranishi F, Mano N (2000) Response of skin cathepsins to infection of Edwardsiella tarda in Japanese flounder. Fish Sci 66:169–170CrossRefGoogle Scholar
  3. Argiolas A, Pisano JJ (1985) Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee (Megabombus pennsylvanicus). J Biol Chem 260:1437–1444PubMedGoogle Scholar
  4. Austin B, McIntosh D (1988) Natural antibacterial compounds on the surface of rainbow trout, Salmo gairdneri Richardson. J Fish Dis 11:275–277CrossRefGoogle Scholar
  5. Bardack D (1998) Relationships of living and fossil hagfishes. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. Chapman and Hall, London, U.K., pp 3–14Google Scholar
  6. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163:947–953PubMedGoogle Scholar
  7. Bergsson G, Agerberth B, Jörnvall H, Gudmundsson GH (2005) Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J 272:4960–4969CrossRefPubMedGoogle Scholar
  8. Bignami GS (1993) A rapid and sensitive hemolysis neutralization assay for palytoxin. Toxicon 31:817–820CrossRefPubMedGoogle Scholar
  9. Birkemo GA, Luders T, Anderson O, Nes IF, Nissen-Meyyer J (2003) Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim Biophys Acta 1646:207–215PubMedGoogle Scholar
  10. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar
  11. Boman HG, Nilsson-Faye I, Paul K, Rasmuson T Jr (1974) Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia Cynthia pupae. Infect Immun 10:136–145PubMedGoogle Scholar
  12. Boulanger N, Munks RJL, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P (2002) A novel antimicoribal peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 277:49921–49926CrossRefPubMedGoogle Scholar
  13. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  14. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev 3:238–250CrossRefGoogle Scholar
  15. Cole AM, Weis P, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptides in the skin secretions of winter flounder. J Biol Chem 272:12008–12013CrossRefPubMedGoogle Scholar
  16. Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839CrossRefPubMedGoogle Scholar
  17. Fernandes JMO, Molle G, Kemp GD, Smith VJ (2004) Isolation and characterization of Oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol 28:127–138CrossRefPubMedGoogle Scholar
  18. Fernandes JMO, Saint N, Kemp GD, Smith VJ (2003) Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 373:621–628CrossRefPubMedGoogle Scholar
  19. Fields PI, Groisman EA, Heffron F (1989) A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062CrossRefPubMedGoogle Scholar
  20. Fouz B, Devesa S, Gravningen K, Barja JL, Toranzo AE (1990) Antibacterial action of the mucus of turbot. Bull Eur Assoc Fish Pathol 10:56–59Google Scholar
  21. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human β-defensin-1 is a salt-sensitive antibiotic in ling that is inactivated in cystic fibrosis. Cell 88:553–560CrossRefPubMedGoogle Scholar
  22. Habermann E (1972) Bee and wasp venoms. Science 177:314–322CrossRefPubMedGoogle Scholar
  23. Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422CrossRefPubMedGoogle Scholar
  24. Hancock REW (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164CrossRefPubMedGoogle Scholar
  25. Hwang EY, Seo JK, Kim CH, Go HJ, Kim EJ, Chung JK, Ryu HS, Park NG (1999) Purification and characterization of a novel antimicrobial peptide from the skin of the hagfish, Eptatretus burgeri. J Food Sci 4:28–32Google Scholar
  26. Kanno T, Nakai T, Muroga K (1989) Mode of transmission of vibriosis among ayu, Plecoglossus altivelis. J Aquat Anim Health 1:2–6CrossRefGoogle Scholar
  27. Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC, O'Connor PM, Ross RP, Hill C, O'Gara F, Marchesi JR, Dobson ADW (2008) Isolation and analysis of bacteria with antimicrobial activitites from marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol. doi:10.1007/s10126-008-9154-1 Google Scholar
  28. Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267CrossRefPubMedGoogle Scholar
  29. Kjuul AK, Büllesbach EE, Espelid S, Dunham R, Jørgensen TØ, Warr GW, Styrvold OB (1999) Effects of cecropin peptides on bacteria pathogenic to fish. J Fish Dis 22:387–394CrossRefGoogle Scholar
  30. Lazarovici P, Primor N, Loew LM (1986) Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 261:16704–16713PubMedGoogle Scholar
  31. Lemaître C, Orange N, Saglio P, Saint N, Gagnon J, Molle G (1996) Characterization and ion channel activities of novel antibacterial proteins from the skin mucosa of carp (Cyprinus carpio). Eur J Biochem 240:143–149CrossRefPubMedGoogle Scholar
  32. Lüders T, Birkemo GA, Meyer JN, Andersen Ø, Nes IF (2005) Proline conformation-dependent antimicrobial activity of a proline-rich histone H1 N-terminal peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob Agents Chemother 49:2399–2406CrossRefPubMedGoogle Scholar
  33. Ming L, Xiaoling P, Yan L, Lili W, Qi W, Xiyong Y, Boyao W, Ning H (2007) Purification of antimicrobial factors from human cervical mucus. Hum Reprod 22:1810–1815CrossRefPubMedGoogle Scholar
  34. Nagashima Y, Kikuchi N, Shimakura K, Shiomi K (2003) Purification and characterization of an antibacterial factor in the skin secretion of rock fish Sebastes schlegeli. Comp Biochem Physiol 136C:63–71Google Scholar
  35. Noga EJ, Silphaduang U (2003) Piscidins: a novel family of peptide antibiotics from fish. Drug News Perspect 16:87–92CrossRefPubMedGoogle Scholar
  36. Oren Z, Shai Y (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole Pardachirus marmoratus. Eur J Biochem 237:303–310CrossRefPubMedGoogle Scholar
  37. Palakaha KJ, Shin GW, Kim YR, Jung TS (2008) Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 24:479–488CrossRefGoogle Scholar
  38. Park IY, Park CB, Kim MS, Kim SC (1998) Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 437:258–262CrossRefPubMedGoogle Scholar
  39. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614CrossRefPubMedGoogle Scholar
  40. Patrzykat A, Gallant JW, Seo JK, Pytyck J, Douglas SE (2003) Novel antimicrobial peptides derived from flatfish genes. Antimicrob Agents Chemother 47:2464–2470CrossRefPubMedGoogle Scholar
  41. Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock REW (2001) Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob Agents Chemother 45:1337–1342CrossRefPubMedGoogle Scholar
  42. Pukala TL, Bowie JH, Maselli VM, Musgrave IF, Tyler MJ (2006) Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat Prod Rep 23:368–393CrossRefPubMedGoogle Scholar
  43. Raison RL, dos Remedios NJ (1998) The hagfish immune system. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. U.K.:Chapman and Hall, London, pp 334–344Google Scholar
  44. Robinson WE Jr, McDougall B, Tran D, Selsted ME (1998) Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 63:94–100PubMedGoogle Scholar
  45. Rolff J (2007) Why did the acquired immune system of vertebrates evolve? Dev Comp Immunol 31:476–482CrossRefPubMedGoogle Scholar
  46. Sarmaşik A (2002) Antimicrobial peptides: a potential therapeutic alternative for the treatment of fish diseases. Turk J Biol 26:201–207Google Scholar
  47. Schägger H, Jagow GV (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefPubMedGoogle Scholar
  48. Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock REW (2000) An α-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol 165:3358–3365PubMedGoogle Scholar
  49. Shephard KL (1993) Mucus on the epidermis of fish and its influence on drug delivery. Adv Drug Deliv Rev 11:403–417CrossRefGoogle Scholar
  50. Shinnar AE, Uzzell T, Rao MN, Spooner E, Lane WS, Zasloff M (1996) New family of linear antimicrobial peptides from hagfish intestine contains bromotryptophan as novel amino acid. In: Kaumaya PTP, Hodges RS (eds) Proceedings of the fourteenth American peptide symposium. U.S.A. Mayflower Scientific Ltd., Ohio, pp 189–191Google Scholar
  51. Subramanian S, MacKinnon SL, Ross NW (2007) A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol 148B:256–263Google Scholar
  52. Subramanian S, Ross NW, MacKinnon SL (2008) Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comp Biochem Physiol 150B:85–92Google Scholar
  53. Syvitski R, Burton I, Mattatall NR, Douglas SE, Jakeman DL (2005) Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 44:7282–7293CrossRefPubMedGoogle Scholar
  54. Verbanac D, Zanetti M, Romeo D (1993) Chemotactic and protease-inhibiting activities of antibiotic peptide precursors. FEBS Lett 317:255–258CrossRefPubMedGoogle Scholar
  55. Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:590–592CrossRefGoogle Scholar
  56. Yano T (1996) The non-specific immune system: humoral defence. In: Iwama G, Nakanishi T (eds) The fish Immune system: Organism, Pathogen and Environment. Academic press, San Diego, U.S.A, pp 105–157Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sangeetha Subramanian
    • 1
    • 2
  • Neil W. Ross
    • 1
    • 3
  • Shawna L. MacKinnon
    • 1
  1. 1.Institute for Marine BiosciencesNational Research CouncilHalifaxCanada,
  2. 2.Department of BiologyDalhousie UniversityHalifaxCanada,
  3. 3.Industrial Research Assistance ProgramNational Research CouncilHalifaxCanada,

Personalised recommendations