Advertisement

Marine Biotechnology

, Volume 11, Issue 5, pp 585–595 | Cite as

Enriching Rotifers with “Premium” Microalgae. Nannochloropsis gaditana

  • Martiña Ferreira
  • Paula Coutinho
  • Pedro Seixas
  • Jaime Fábregas
  • Ana OteroEmail author
Original Article

Abstract

The nutritive quality of Nannochloropsis gaditana cultured semicontinuously with different daily renewal rates was tested as a diet for short-term enrichment of the rotifer Brachionus plicatilis. After 24 h, dramatic differences in the survival, dry weight, and biochemical composition of the rotifers depending on the renewal rate of microalgal cultures were observed. Survival after the feeding period increased with increasing renewal rates. Rotifers fed microalgae from low renewal rate, nutrient-deficient cultures showed low dry weight and organic contents very similar to those of the initial rotifers that were starved for 12 h before the start of the feeding period. On the contrary, rotifers fed nutrient-sufficient microalgal cells underwent up to twofold increases of dry weight and protein, lipid, and carbohydrate contents with regard to rotifers fed nutrient-depleted N. gaditana. Consequently, feed conversion rate decreased in these conditions, indicating a better assimilation of the microalgal biomass obtained at high renewal rates. No single microalgal biochemical parameter among those studied can explain the response of the filter feeder. Similarly to gross composition, EPA and n-3 contents in rotifers fed microalgae from nutrient-sufficient cultures were double than the contents found in rotifers fed nutrient-limited microalgae. In addition, very high positive correlations between the contents of EPA and n-3 in N. gaditana and B. plicatilis were observed. These results demonstrate that selecting the appropriate conditions of semicontinuous culture can strongly enhance the nutritional value of microalgae that is reflected in the growth and biochemical composition of the filter-feeder even in short exposure periods.

Keywords

Brachionus plicatilis Microalgae Nannochloropsis gaditana Nutrition Semicontinuous culture Biochemical composition 

References

  1. Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dinamics. Ecol lett 7:884–900CrossRefGoogle Scholar
  2. Aragão C, Conceição LEC, Dinis MT, Fyhn H-J (2004) Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture 234:429–445CrossRefGoogle Scholar
  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  4. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  5. Brown MR, McCausland MA, Kovalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165:281–293CrossRefGoogle Scholar
  6. Coutinho P (2008) La microalga marina Rhodomonas lens: optimización de las condiciones de cultivo y potencial biotecnológico. Ph. D. Thesis, Universidade de Santiago de Compostela. p 261Google Scholar
  7. Dhert P (1996) Rotifers. In: Lavens P, Sorgeloos P (eds) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper n° 361. FAO, Rome, pp 49–78Google Scholar
  8. Dhert P, Rombaut G, Suantika G (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146CrossRefGoogle Scholar
  9. Duerr EO, Molnar A, Sato V (1998) Cultured microalgae as aquaculture feeds. J Mar Biotechnol 7:65–70Google Scholar
  10. Fábregas J, Herrero C, Cabezas B, Abalde J (1985) Mass culture and biochemical variability of the marine microalga Tetraselmis suecica Kylin (Butch) with high nutrient concentrations. Aquaculture 49:231–244CrossRefGoogle Scholar
  11. Fábregas J, Patiño M, Arredondo-Vega BO, Tobar JL, Otero A (1995a) Renewal rate and nutrient concentration as tools to modify productivity and biochemical composition of cyclostat cultures of the marine microalga Dunaliella tertiolecta. Appl Microbiol Biotechnol 44:287–292CrossRefGoogle Scholar
  12. Fábregas J, Patiño M, Vecino E, Cházaro F, Otero A (1995b) Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol 43:617–621CrossRefGoogle Scholar
  13. Fábregas J, Otero A, Morales ED, Arredondo-Vega BO, Patiño M (1998) Modification of the nutritive value of Phaeodactylum tricornutum for Artemia sp. in semicontinuous cultures. Aquaculture 169:167–176CrossRefGoogle Scholar
  14. Fábregas J, Otero A, Dominguez A, Patiño M (2001) Growth rate of the microalga Tetraselmis suecica changes the biochemical composition of Artemia species. Mar Biotechnol 3:256–263PubMedCrossRefGoogle Scholar
  15. Ferreira M (2007) Optimización do valor nutritivo de microalgas mariñas para o enriquecemento e cultivo do rotífero Brachionus plicatilis. Ph. D. Thesis, p 267Google Scholar
  16. Ferreira M, Maseda A, Fábregas J, Otero A (2008) Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture 279:126–130CrossRefGoogle Scholar
  17. Flynn KJ, Garrido JL, Zapata M, Öpik H, Hipkin CR (1992) Changes in fatty acids, amino acids and carbon/nitrogen biomass during nitrogen starvation of ammonium- and nitrate-grown p. J Appl Phycol 4:95–104CrossRefGoogle Scholar
  18. Frolov AV, Pankov SL, Geradze KN, Pankova SA, Spektorova LV (1991) Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97:181–202CrossRefGoogle Scholar
  19. Fukusho K (1989) Biology and mass production of the rotifer, Brachionus plicatilis (1). Int J Aq Fish Technol 1:232–240Google Scholar
  20. Herbert D, Phipps PJ, Stranoe RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, London, pp 209–344CrossRefGoogle Scholar
  21. Jensen TC, Verschoor AM (2004) Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshwater Biol 49:1138–1151CrossRefGoogle Scholar
  22. Jones RH, Flynn KJ (2005) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459PubMedCrossRefGoogle Scholar
  23. Jones RH, Flynn KJ, Anderson TR (2002) Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Mar Ecol, Prog Ser 235:147–156CrossRefGoogle Scholar
  24. Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, London, pp 95–97Google Scholar
  25. Lowry OH, Rosebrough HJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309CrossRefGoogle Scholar
  27. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576PubMedGoogle Scholar
  28. Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27(5):393–399CrossRefGoogle Scholar
  29. Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Microbiol 12:527–534Google Scholar
  30. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer berween primary producers and consumers. Nature 403:74–77PubMedCrossRefGoogle Scholar
  31. Nordgreen A, Hamre K, Langdon C (2007) Development of lipid microbeads for delivery of lipids and water-soluble materials to Artemia. Aquaculture 273:614–623CrossRefGoogle Scholar
  32. Øie G, Olsen Y (1997) Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding condition. Hydrobiologia 358:251–258CrossRefGoogle Scholar
  33. Øie G, Makridis P, Reitan KI, Olsen Y (1997) Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus L.). Aquaculture 153:103–122CrossRefGoogle Scholar
  34. Olsen Y, Rainuzzo JR, Vadstein O, Jensen A (1989) Kinetics of n-3 fatty acids in Brachionus plicatilis and changes in the food supply. Hydrobiologia 186/187:409–413CrossRefGoogle Scholar
  35. Otero A, Fábregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123CrossRefGoogle Scholar
  36. Otero A, García D, Morales ED, Arán J, Fábregas J (1997) Manipulation of the biochemical composition of the eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures. Biotechnol Appl Biochem 26:171–177Google Scholar
  37. Otero A, Domínguez A, Lamela T, García D, Fábregas J (1998) Steady-states of semicontinuous cultures of a marine diatom: effect of saturating nutrient concentrations. J Exp Mar Biol Ecol 227:23–34CrossRefGoogle Scholar
  38. Otero A, Patiño M, Domínguez A, Fábregas J (2002) Tailoring the nutritional composition of microalgae for aquaculture purposes—the use of semicontinuous culture techniques. World Aquac/ Aquac Eur 33:13–16Google Scholar
  39. Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture 221:491–505CrossRefGoogle Scholar
  40. Ponis E, Parisi G, Le Coz J-R, Robert R, Zitelli GC, Tredici MR (2006) Effect of the culture system and culture technique on biochemical caracteristics of Pavlova lutheri and its nutritional value for Crassostrea gigas larvae. Aquac Nutr 12:322–329CrossRefGoogle Scholar
  41. Robert R, Trintignac P (1997) Substitutes for live microalgae in mariculture: a review. Aquat Living Res 10:315–327CrossRefGoogle Scholar
  42. Rodolfi L, Chini Zitelli G, Barsanti L, Rosati G, Tredici MR (2003) Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng 20:243–248PubMedCrossRefGoogle Scholar
  43. Rodríguez C, Pérez JA, Izquierdo MS, Cejas JR, Bolaños A, Lorenzo A (1996) Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture 147:93–105CrossRefGoogle Scholar
  44. Rodríguez Rainuzzo J, Olsen Y, Rosenlund G (1989) The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture 79:157–161CrossRefGoogle Scholar
  45. Rønnestad I, Tonheim SK, Fyhn HJ, Rojas-García CR, Kamisaka Y, Koven W, Finn RN, Terjesen BF, Barr Y, Conceiçao LEC (2003) The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147–164CrossRefGoogle Scholar
  46. Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanog 40(7):1201–1208CrossRefGoogle Scholar
  47. Sato N, Murata N (1988) Membrane lipids. In: Parker L, Glazer A (eds) Cyanobacteria, methods enzymol 167. California Academic Press, San Diego, pp 251–259CrossRefGoogle Scholar
  48. Scott AP (1980) Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J Mar Biol Assoc UK 60:681–702CrossRefGoogle Scholar
  49. Seixas P, Rey-Méndez M, Valente L, Otero A (2008) Producing juvenile Artemia as prey for Octopus vulgaris paralarvae with different microalgal species of controlled biochemical composition. Aquaculture 283:83–91CrossRefGoogle Scholar
  50. Sick LV (1976) Nutritional effect of five species of marine algae on the growth, development and survival of the brine shrimp Artemia salina. Mar Biol 35:69–78CrossRefGoogle Scholar
  51. Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture 97:61–72CrossRefGoogle Scholar
  52. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  53. Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326CrossRefGoogle Scholar
  54. Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78CrossRefGoogle Scholar
  55. Yúfera M, Pascual E, Guinea J (1993) Factors influencing the biomass of the rotifer Brachionus plicatilis in culture. Hydrobiologia 255/256:159–164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Martiña Ferreira
    • 2
  • Paula Coutinho
    • 1
  • Pedro Seixas
    • 2
  • Jaime Fábregas
    • 2
  • Ana Otero
    • 2
    Email author
  1. 1.Escola Superior de Saúde da GuardaGuardaPortugal
  2. 2.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations