Advertisement

Marine Biotechnology

, Volume 11, Issue 4, pp 540–547 | Cite as

Phylogenetic Diversity and Antimicrobial Activities of Fungi Associated with Haliclona simulans Isolated from Irish Coastal Waters

  • Paul W. Baker
  • Jonathan Kennedy
  • Alan D. W. Dobson
  • Julian R. MarchesiEmail author
Original Article

Abstract

The diversity and antimicrobial activities of 80 fungi isolated from Haliclona simulans were assessed using different fungal media containing either agar or gellum gum. In total, 19 different genotypes were detected. These fungal isolates could be classified as members of the Agaricomycotina, Mucoromycotina, Saccharomycotina, and Pezizomycotina, although the majority of the isolates were associated with the latter class. Some of these fungal isolates showed antimicrobial inhibition of Escherichia coli, Bacillus sp., Staphylococcus aureus, and Candida glabrata. Fungal 18S rRNA gene sequences belonging to Eurotiales, Calosphaeriales, and Chaetothyriales were amplified from DNA and RNA extracted from this marine sponge. This study indicates that in contrast to the low diversity of fungi detected by polymerase chain reaction (PCR) and reverse transcription (RT)-PCR amplification from extracts of this marine sponge, a much higher diversity of fungi could be cultured. The data suggests that some fungi live in symbiosis with H. simulans, whereas other fungi may have been ingested from the surrounding seawater.

Keywords

Marine-derived fungi Haliclona Antimicrobial Symbiosis Gellum gum 

Notes

Acknowledgements

Both PWB and JK are in receipt of Marie Curie Transfer of Knowledge Host Fellowships; [grant no. MTKD-CT-2006-042062]. This project was funded by the Irish Marine Institute under the Strategic Marine Biodiscovery RTDI Programme and by the Marine Biodiscovery Research Award funded by the Irish Government under the National Development Plan (2007-2013). We thank Dr. Grace McCormack from the National University of Ireland, Galway, for the Haliclona simulans sponge samples.

References

  1. Amade P, Charroin C, Baby C, Vacelet J (1987) Antimicrobial activities of marine sponges from the Mediterranean Sea. J Mar Biol 94:271–275CrossRefGoogle Scholar
  2. Al-Samarrai TH, Schmid J (2000) A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol 30:53–56PubMedCrossRefGoogle Scholar
  3. Bell JJ, Barnes DKA (2003) The importance of competitor identity, morphology and ranking. Mar Biol 143:415–426CrossRefGoogle Scholar
  4. Bell JJ, Barnes DKA (2000) A sponge diversity centre within a marine ‘island’. Hydrobiologia 440:55–64CrossRefGoogle Scholar
  5. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biot 33:325–337CrossRefGoogle Scholar
  6. Blunt JW, Brent RC, Hu W-P, Munro MHG, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86PubMedCrossRefGoogle Scholar
  7. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163PubMedCrossRefGoogle Scholar
  8. Chen SC, Chen YC, Kwang J, Manopo I, Wang PC, Chaung HC, Liaw LL, Chiu SH (2007) Methschnikowia biscuspidata dominates in Taiwanese cold-weather yeast infections of Macrobrachium rosenbergii. Dis Aquat Organ 75:191–199PubMedCrossRefGoogle Scholar
  9. Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk (1999) Antibacterial activity of marine-derived fungi. Mycopathologia 143:135–138CrossRefGoogle Scholar
  10. Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951PubMedCrossRefGoogle Scholar
  11. Duckworth AR, Pomponi SA (2005) Relative importance of bacteria, microalgae and yeast for growth of the sponge Haliclondria melanadocia (De Laubenfels, 1936): a laboratory study. J Exp Mar Biol Ecol 323:151–159CrossRefGoogle Scholar
  12. Dunlap WC, Battershill CN, Liptrot CH, Cobb RE, Bourne DG, Jaspars M, Long PF, Newman DJ (2007) Biomedicinals from the phytosymbionts of marine invertebrates: a molecular approach. Methods 42:358–276PubMedCrossRefGoogle Scholar
  13. Guarro J, Gené J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12:454–500PubMedGoogle Scholar
  14. Gulis VI, Stephanovich AI (1999) Antibiotic effects of some aquatic hyphomycetes. Mycol Res 103:111–115CrossRefGoogle Scholar
  15. Gulis V, Suberkropp K (2003) Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat Microb Ecol 30:149–157CrossRefGoogle Scholar
  16. Hiscock K, Southward A, Tittley I, Hawkins S (2004) Effects of changing temperature on benthic marine life in Britain and Ireland. Aquat Conserv: Mar Freshw Ecosyst 14:333–362CrossRefGoogle Scholar
  17. Höller U, Wright AD, Mathée GF, Konig GM, Draeger S, Aust H-J, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365CrossRefGoogle Scholar
  18. Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396PubMedCrossRefGoogle Scholar
  19. Kennedy J, Codling, CE, Jones B, Dobson ADW and Marchesi JR (2008) Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ Microbiol (Published article online: 21-Apr-2008 doi: 10.1111/j.1462-2920.2008.01614.x.)
  20. Li Q, Wang, G (2007) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res doi: 10.1016/j.micres.2007.07.02
  21. Li C-W, Chen J-Y, Hua T-E (1998) Precambrian sponges with cellular structures. Science 279:879–882PubMedCrossRefGoogle Scholar
  22. McClintock JB, Gautier JJ (1992) Antimicrobial activities of Antarctic sponges. Antarct Science 4:179–183Google Scholar
  23. Maldonado M, Cortadellas N, Trillas MI, Rützler (2005) Endosymbiotic yeast maternally transmitted in a marine sponge. Biol Bull 209:94–106PubMedCrossRefGoogle Scholar
  24. Moore MM, Strom MS (2003) Infection and mortality by the yeast Metschnikowia biscuspidata var. biscuspidata in chinnock salmon fed live adult brine shrimp (Artemia franciscana). Aquaculture 220:43–57CrossRefGoogle Scholar
  25. Pivkin MV, Aleshko SA, Krashokhin VB, Khudyakova YV (2006) Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Russ J Mar Biol 32:207–113CrossRefGoogle Scholar
  26. Proksch P, Edrada-Ebel R-A, Ebel R (2003) Drugs from the sea—opportunities and obstacles. Mar Drugs 1:5–17CrossRefGoogle Scholar
  27. Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591CrossRefGoogle Scholar
  28. Rifai S, Fassouane A, El-Abbouyi A, Wardani A, Kijjoa A, Van Soest R (2005) Screening of antimicrobial activity of marine sponge extracts. J Mycol Med 15:33–38Google Scholar
  29. Robbins WJ, Hervey A, Davidson RW, Ma R, Robbins WC (1945) A survey of some wood-destroying and other fungi for antibacterial activity. Bull Torrey Bot Club 72:165–190CrossRefGoogle Scholar
  30. Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71PubMedCrossRefGoogle Scholar
  31. Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621PubMedGoogle Scholar
  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  33. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology and biotechnology potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  34. Touati I, Cahieb K, Bakhrouf A, Gaddour K (2007) Screening of antimicrobial activity of marine sponge extracts collected from the Tunisian coast. J Mycol Med 17:183–187Google Scholar
  35. Wang G, Li Q, Zhu P (2008) Phylogentic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Ant van Leeuw Int J G 93:163–174CrossRefGoogle Scholar
  36. Watson DI, Barnes DK (2004) Temporal and spatial components of variability in benthic recruitment, a 5-year temperate example. Mar Biol 145:201–214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul W. Baker
    • 1
  • Jonathan Kennedy
    • 1
  • Alan D. W. Dobson
    • 1
    • 2
  • Julian R. Marchesi
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Environmental Research InstituteUniversity College CorkCorkIreland
  2. 2.Department of MicrobiologyUniversity College CorkCorkIreland
  3. 3.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland
  4. 4.School of BiosciencesCardiff UniversityWalesUK

Personalised recommendations