Advertisement

Marine Biotechnology

, Volume 11, Issue 3, pp 384–396 | Cite as

Isolation and Analysis of Bacteria with Antimicrobial Activities from the Marine Sponge Haliclona simulans Collected from Irish Waters

  • Jonathan Kennedy
  • Paul Baker
  • Clare Piper
  • Paul D. Cotter
  • Marcella Walsh
  • Marlies J. Mooij
  • Marie B. Bourke
  • Mary C. Rea
  • Paula M. O’Connor
  • R. Paul Ross
  • Colin Hill
  • Fergal O’Gara
  • Julian R. Marchesi
  • Alan D. W. Dobson
Original Article

Abstract

Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

Keywords

Haliclona simulans Antimicrobial activity Polyketide synthase Nonribosomal peptide synthetase 

Notes

Acknowledgments

JK, PB, and MJM are in receipt of Marie Curie Transfer of Knowledge Host Fellowships; [grant no. MTKD-CT-2006-042062]. This project was funded by the Irish Marine Institute under the Strategic Marine Biodiscovery RTDI Programme and by the Marine Biodiscovery Research Award funded by the Irish Government under the National Development Plan (2007–2013). We thank Dr Grace McCormack from the National University of Ireland, Galway, for the H. simulans sponge samples.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  3. Ayuso A, Clark D, Gonzalez I, Salazar O, Anderson A, Genilloud O (2005) A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol Biotechnol 67:795–806PubMedCrossRefGoogle Scholar
  4. Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb Ecol 49:10–24PubMedCrossRefGoogle Scholar
  5. Barrett AG, Boys ML, Boehm TL (1996) Total synthesis of (+)-papuamine: an antifungal pentacyclic alkaloid from a marine sponge, Haliclona sp. J Org Chem 61:685–699PubMedCrossRefGoogle Scholar
  6. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86PubMedCrossRefGoogle Scholar
  7. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27PubMedCrossRefGoogle Scholar
  8. Clark RJ, Garson MJ, Hooper JN (2001) Antifungal alkyl amino alcohols from the tropical marine sponge Haliclona n. sp. J Nat Prod 64:1568–1571PubMedCrossRefGoogle Scholar
  9. Devi P, Vennam J, Naik CG, Parameshwaran PS, Raveendran TV, Yeshwant KS (1998) Antifouling activity of Indian marine invertebrates against the green mussel Perna viridis L. J Mar Biotechnol 6:229–232PubMedGoogle Scholar
  10. Dieckmann R, Graeber I, Kaesler I, Szewzyk U, Von Dohren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the sula ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67:539–548PubMedCrossRefGoogle Scholar
  11. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–109PubMedCrossRefGoogle Scholar
  12. Dubern JF, Lugtenberg BJ, Bloemberg GV (2006) The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188:2898–2906PubMedCrossRefGoogle Scholar
  13. Edwards DJ, Marquez BL, Nogle LM, Mcphail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833PubMedCrossRefGoogle Scholar
  14. Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732PubMedCrossRefGoogle Scholar
  15. Erickson KL, Beutler JA, Cardellina IJ, Boyd MR (1997) Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 62:8188–8192PubMedCrossRefGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Fortman JL, Sherman DH (2005) Utilizing the power of microbial genetics to bridge the gap between the promise and the application of marine natural products. Chembiochem 6:960–978PubMedCrossRefGoogle Scholar
  18. Fukunaga Y, Kurahashi M, Tanaka K, Yanagi K, Yokota A, Harayama S (2006) Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). Int J Syst Evol Microbiol 56:343–347PubMedCrossRefGoogle Scholar
  19. Gaitatzis N, Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R (2002) The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J Biol Chem 277:13082–13090PubMedCrossRefGoogle Scholar
  20. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312PubMedCrossRefGoogle Scholar
  21. Hill RT, Peraud O, Hamann MT, Noer K (2005) Manzamine producing actinomycetes. United States Patent ApplicationGoogle Scholar
  22. Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W (2006) Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol 13:575–585PubMedCrossRefGoogle Scholar
  23. Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie van Leeuwenhoek 92:405–416PubMedCrossRefGoogle Scholar
  24. Kennedy J, Codling CE, Jones BV, Dobson AD, Marchesi JR (2008) Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. Environ Microbiol 10(7):1888–1902PubMedCrossRefGoogle Scholar
  25. Kieser T, Bibb M, Buttner MJ, Chater K, Hopwood DA (2000) Practical streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  26. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the “Salinospora” group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518PubMedCrossRefGoogle Scholar
  27. Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA (2006) Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 72:2118–2125PubMedCrossRefGoogle Scholar
  28. Lane DJ (1991) 16S/23S rRNA squencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, ChichesterGoogle Scholar
  29. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529PubMedCrossRefGoogle Scholar
  30. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36PubMedCrossRefGoogle Scholar
  31. Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean sea. Microb Ecol 55:94–106PubMedCrossRefGoogle Scholar
  32. Neilan BA, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Borner T (1999) Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 181:4089–4097PubMedGoogle Scholar
  33. Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434PubMedCrossRefGoogle Scholar
  34. Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutierrez R, Buendia-Claveria AM, Lei W, Margaret I, Lopez-Baena FJ, Gil-Serrano AM, Rodriguez-Carvajal MA, Moreno J, Ruiz-Sainz JE (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant Microbe Interact 19:43–52PubMedCrossRefGoogle Scholar
  35. Rashid MA, Gustafson KR, Boswell JL, Boyd MR (2000) Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge Haliclona nigra. J Nat Prod 63:956–959PubMedCrossRefGoogle Scholar
  36. Richelle-Maurer E, Braekman JC, De Kluijver MJ, Gomez R, Van De Vyver G, Van Soest RW, Devijver C (2001) Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell Tissue Res 306:157–165PubMedCrossRefGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  38. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404–6405CrossRefGoogle Scholar
  39. Sera Y, Adachi K, Fujii K, Shizuri Y (2002) Isolation of Haliclonamides: new peptides as antifouling substances from a marine sponge species, Haliclona. Mar Biotechnol (NY) 4:441–446CrossRefGoogle Scholar
  40. Sertan-De Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP, Mangalindan GC, Tasdemir D, Ireland CM, Barraquio WL, Concepcion GP (2007) Pseudovibrio denitrificans strain Z143–1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiol Lett 277:188–196PubMedCrossRefGoogle Scholar
  41. Shieh WY, Lin YT, Jean WD (2004) Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54:2307–2312PubMedCrossRefGoogle Scholar
  42. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035PubMedCrossRefGoogle Scholar
  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  44. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347PubMedCrossRefGoogle Scholar
  45. Thakur AN, Thakur NL, Indap MM, Pandit RA, Datar VV, Muller WE (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol 7:245–252PubMedCrossRefGoogle Scholar
  46. Thiel V, Imhoff JF (2003) Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomolecular Engineering 20:421–423PubMedCrossRefGoogle Scholar
  47. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-proteobacterium. Mar Biol 138:843–851CrossRefGoogle Scholar
  48. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–44PubMedCrossRefGoogle Scholar
  49. Yu S, Deng Z, Proksch P, Lin W (2006) Oculatol, oculatolide, and A-nor sterols from the sponge Haliclona oculata. J Nat Prod 69:1330–1334PubMedCrossRefGoogle Scholar
  50. Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169PubMedCrossRefGoogle Scholar
  51. Zhang H, Zhang W, Jin Y, Jin M, Yu X (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Van Leeuwenhoek 93:241–248PubMedCrossRefGoogle Scholar
  52. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jonathan Kennedy
    • 1
  • Paul Baker
    • 1
  • Clare Piper
    • 2
  • Paul D. Cotter
    • 2
  • Marcella Walsh
    • 2
  • Marlies J. Mooij
    • 3
  • Marie B. Bourke
    • 3
  • Mary C. Rea
    • 4
    • 5
  • Paula M. O’Connor
    • 4
    • 5
  • R. Paul Ross
    • 4
    • 5
  • Colin Hill
    • 2
    • 5
  • Fergal O’Gara
    • 2
    • 3
  • Julian R. Marchesi
    • 2
    • 5
    • 6
  • Alan D. W. Dobson
    • 1
    • 2
    • 7
  1. 1.Environmental Research InstituteUniversity College CorkCorkIreland
  2. 2.Department of MicrobiologyUniversity College CorkCorkIreland
  3. 3.BIOMERIT Research Centre, Department of MicrobiologyUniversity College CorkCorkIreland
  4. 4.Teagasc, Moorepark Food Research CentreFermoy CoCorkIreland
  5. 5.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland
  6. 6.School of BiosciencesCardiff UniversityCardiffUK
  7. 7.Environmental Research Institute and Microbiology DepartmentUniversity College Cork, National University of Ireland CorkCorkIreland

Personalised recommendations