Marine Biotechnology

, 10:487 | Cite as

Rainbow Smelt (Osmerus mordax) Genomic Library and EST Resources

  • K. R. von Schalburg
  • J. Leong
  • G. A. Cooper
  • A. Robb
  • M. R. Beetz-Sargent
  • R. Lieph
  • R. A. Holt
  • R. Moore
  • K. V. Ewart
  • W. R. Driedzic
  • B. F. H. ten Hallers
  • B. Zhu
  • P. J. de Jong
  • W. S. Davidson
  • B. F. Koop
Short Communication

Abstract

Genomic resources in rainbow smelt (Osmerus mordax) enable us to examine the genome duplication process in salmonids and test hypotheses relating to the fate of duplicated genes. They further enable us to pursue physiological and ecological studies in smelt. A bacterial artificial chromosome library containing 52,410 clones with an average insert size of 146 kb was constructed. This library represents an 11-fold average coverage of the rainbow smelt (O. mordax) genome. In addition, several complementary deoxyribonucleic acid libraries were constructed, and 36,758 sequences were obtained and combined into 12,159 transcripts. Over half of these transcripts have been identified, several of which have been associated with cold adaptation. These basic resources show high levels of similarity (86%) to salmonid genes and provide initial support for genome duplication in the salmonid ancestor. They also facilitate identification of genes important to fish and direct us toward new technologies for other studies in fish biology.

Keywords

cDNA EST database BAC library Rainbow smelt 

Notes

Acknowledgments

This research was supported by Genome Canada and Genome British Columbia. We thank Stephen O’Leary (NRC IMB) for critical review of the manuscript. The authors thank Connie Short for animal husbandry and tissue collection. This is NRC publication number 2007-42762.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) Evolutionary genetics of fishes. Plenum, New York, pp 1–53Google Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Boguski MS, Lowe TMJ, Tolstoshev CM (1993) dbEST—database for “expressed sequence tags”. Nat Genet 4:332–333PubMedCrossRefGoogle Scholar
  4. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R (2004) The gene ontology annotation (GOA) database: sharing knowledge in Uniprot with gene ontology. Nucleic Acids Res 32:D262–D266PubMedCrossRefGoogle Scholar
  5. Driedzic WR, Ewart KV (2004) Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures. Comp Biochem Physiol B Biochem Mol Biol 139:347–357PubMedCrossRefGoogle Scholar
  6. Hardie DC, Hebert PDN (2003) The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 46:683–706PubMedCrossRefGoogle Scholar
  7. Hanson RW, Reshef L (2003) Glyceroneogenesis revisited. Biochimie 85:1199–1205PubMedCrossRefGoogle Scholar
  8. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261PubMedCrossRefGoogle Scholar
  9. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  10. Inglis SR, Turner JJ, Harding MM (2006) Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties. Curr Protein Pept Sci 7:509–522PubMedCrossRefGoogle Scholar
  11. Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 27:476–488PubMedCrossRefGoogle Scholar
  12. Kopp J, Schwede T (2006) The SWISS-MODEL repository: new features and functionalities. Nucleic Acids Res 34:D315–D318PubMedCrossRefGoogle Scholar
  13. Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422PubMedCrossRefGoogle Scholar
  14. Liebscher RS, Richards RC, Lewis JM, Short CE, Muise DM, Driedzic WR, Ewart KV (2006) Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes. Physiol Biochem Zool 79:411–423PubMedCrossRefGoogle Scholar
  15. Lukacs MF, Harstad H, Grimholt U, Beetz-Sargent M, Cooper GA, Reid L, Bakke HG, Phillips RB, Miller KM, Davidson WS, Koop BF (2007) Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics 8:251–266PubMedCrossRefGoogle Scholar
  16. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196PubMedCrossRefGoogle Scholar
  17. McKay SJ, Trautner J, Smith MJ, Koop BF, Devlin RH (2004) Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes. Genome 47:714–723PubMedCrossRefGoogle Scholar
  18. Ohno S (1970) Evolution by gene duplication. Springer, Heidelberg, GermanyGoogle Scholar
  19. Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187PubMedCrossRefGoogle Scholar
  20. Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, de Jong PJ (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52:1–8PubMedCrossRefGoogle Scholar
  21. Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, Hunt P, Shukin R, Zeznik JA, Nelson C, Jones SRM, Smailus DE, Jones SJM, Schein JE, Marra MA, Butterfield YSN, Stott JM, Ng SHS, Davidson WS, Koop BF (2004) Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res 14:478–490PubMedCrossRefGoogle Scholar
  22. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  23. von Schalburg KR, Rise ML, Cooper GA, Brown GD, Gibbs AR, Nelson CC, Davidson WS, Koop BF (2005) Fish and chips: various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics 6:126–133CrossRefGoogle Scholar
  24. Walter JA, Ewart KV, Short CE, Burton IW, Driedzic WR (2006) Accelerated hepatic glycerol synthesis in rainbow smelt (Osmerus mordax) is fuelled directly by glucose and alanine: a 1H and 13C nuclear magnetic resonance study. J Exp Zool A Comp Exp Biol 305:480–488CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • K. R. von Schalburg
    • 1
  • J. Leong
    • 1
  • G. A. Cooper
    • 1
  • A. Robb
    • 1
  • M. R. Beetz-Sargent
    • 1
  • R. Lieph
    • 1
  • R. A. Holt
    • 2
  • R. Moore
    • 2
  • K. V. Ewart
    • 3
  • W. R. Driedzic
    • 4
  • B. F. H. ten Hallers
    • 5
  • B. Zhu
    • 5
  • P. J. de Jong
    • 5
  • W. S. Davidson
    • 6
  • B. F. Koop
    • 1
    • 7
  1. 1.Centre for Biomedical ResearchUniversity of VictoriaVictoriaCanada
  2. 2.Genome Sciences CentreBC Cancer AgencyVancouverCanada
  3. 3.Institute for Marine BiosciencesNational Research CouncilHalifaxCanada
  4. 4.Oceans Sciences CentreMemorial University of NewfoundlandSt. John’sCanada
  5. 5.BACPAC ResourcesChildren’s Hospital OaklandOaklandUSA
  6. 6.Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyCanada
  7. 7.Department of BiologyUniversity of VictoriaVictoriaCanada

Personalised recommendations