Marine Biotechnology

, Volume 10, Issue 2, pp 111–121

Underwater Adhesive of Marine Organisms as the Vital Link Between Biological Science and Material Science

Invited Review


Marine sessile organisms naturally attach themselves to diverse materials in water by a technique that has so far remained unreproducible. Recent studies on the holdfast of marine sessile organisms have revealed natural concepts that are currently beyond our understanding with respect to the molecular design and macroscopic range. The combination of valuable and practical natural design of biotic adhesives as biomolecular materials, together with continuing efforts towards mimetic design, hold the promise of revolution for future materials. This review focuses on recent advances in the study of barnacle underwater cement, a protein complex whose constituents and the properties of individual components are being uncovered. A comparison is made with the model systems used by the mussel and tubeworm.


sessile organism adhesive multi-protein complex self-assembly coupling 


  1. Anderson KE, Waite JH (1998) A major protein precursor of xebra mussel (Dreissena polymorpha) byssus: deduced sequence and significance. Biol Bull 194:150–160PubMedCrossRefGoogle Scholar
  2. Chen X, Ferrigno R, Yang J, Whitesides GM (2002) Redox properties of cytochrome c adsorbed on self-assembled monolayers: a probe for protein conformation and orientation. Langmuir 18:7009–7015CrossRefGoogle Scholar
  3. Dalsin JL, Bh H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258PubMedCrossRefGoogle Scholar
  4. Das R, Kiley PJ, Segal M, Norville J, Yu AA (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4:1079–1083CrossRefGoogle Scholar
  5. Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Chem Biol 3:100–105PubMedCrossRefGoogle Scholar
  6. Flammang P, Santos R, Haesaerts D (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In: Matranga V (ed) Progress in molecular and subcellular biology subseries marine molecular biotechnology. Springer-Verlag, Berlin, pp 201–220Google Scholar
  7. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332PubMedCrossRefGoogle Scholar
  8. Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390PubMedCrossRefGoogle Scholar
  9. Floriolli R, von Langen J, Waite JH (2000) Marine surfaces and the expression of specific byssal adhesive protein variants in Mytilus. Mar Biotech 2:352–363Google Scholar
  10. Humphrey AJ, Finlay JA, Pettitt ME, Stanley MS, Callow JA (2005) Effect of Ellman’s reagent and dithiothreitol on the curing of the spore adhesive glycoprotein of the green alga Ulva. J Adhesion 81:791–803CrossRefGoogle Scholar
  11. Hwang DS, Gim Y, Cha HJ (2005) Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnol Prog 21:965–970PubMedCrossRefGoogle Scholar
  12. Hwang DS, Gim Y, Yoo HJ, Cha HJ (2007) Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 28:3560–3568PubMedCrossRefGoogle Scholar
  13. Hyun J, Lee WK, Nath N, Chilkoti A, Zauscher S (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches.” J Am Chem Soc 126:7330–7335PubMedCrossRefGoogle Scholar
  14. Iijima M, Hashimoto T, Matsuda Y, Nagai T, Yamano Y, Ichi T, Osaki T, Kawabata S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J 272:4774–4786PubMedCrossRefGoogle Scholar
  15. Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701PubMedCrossRefGoogle Scholar
  16. Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106PubMedCrossRefGoogle Scholar
  17. Kallio JM, Linder MB, Rouvinen J (2007) Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. J Biol Chem 282:28733–28739PubMedCrossRefGoogle Scholar
  18. Kamino K (2001) Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem J 356:503–507PubMedCrossRefGoogle Scholar
  19. Kamino K (2006) Barnacle underwater attachment. In: Smith AM, Callow JA (eds) Biological adhesives. Springer-Verlag, Berlin, pp 145–166CrossRefGoogle Scholar
  20. Kamino K, Odo S, Maruyama T (1996) Cement proteins of the acorn barnacle, Megabalanus rosa. Biol Bull 190:403–409PubMedCrossRefGoogle Scholar
  21. Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins. Importance of disulfide bonds in their insolubility. J Biol Chem 275:27360–27365PubMedGoogle Scholar
  22. Lacombe D (1970) A comparative study of the cement glands in some balanid barnacles (cirripedia, balanidae). Biol Bull 139:164–179CrossRefGoogle Scholar
  23. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103:12999–13003PubMedCrossRefGoogle Scholar
  24. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341PubMedCrossRefGoogle Scholar
  25. Lin Q, Gourdon D, Sun C, Holten-Andersen TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104:3782–3786PubMedCrossRefGoogle Scholar
  26. Loizou E, Weisser JT, Dundigalla A, Porcar L, Schmidt G, Wilker JJ (2006) Structural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive protein. Macromol Biosci 6:711–718PubMedCrossRefGoogle Scholar
  27. Mandard N, Sy D, Maufrais C, Bonmatin JM, Bulet P, Hetru C, Vovelle F (1999) Androctonin, a novel antimicrobial peptide from scorpion Androctonus austrails: solution structure and molecular dynamics in the presence of a lipid monolayer. J Biomol Struct Dyn 17:367–380PubMedGoogle Scholar
  28. McDowell LM, Burzio LA, Waite JH, Schaefer J (1999) Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem 274:20293–20295PubMedCrossRefGoogle Scholar
  29. Mori Y, Urushida Y, Nakano M, Uchiyama S, Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS J 274:6436–6446PubMedGoogle Scholar
  30. Nagai A, Yamamoto H (1989) Insolubilizing studies of water-soluble poly(Lys Tyr) by tyrosinase. Bull Chem Soc Jpn 62:2410–2412CrossRefGoogle Scholar
  31. Nakano M, Shen J-R, Kamino K (2007) Self-assembling peptide inspired by a barnacle underwater adhesive protein. Biomacromol 8:1830–1835CrossRefGoogle Scholar
  32. Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Bio Assoc UK 73:689–702CrossRefGoogle Scholar
  33. Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2004) Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24:4091-4099CrossRefGoogle Scholar
  34. Okano K, Shimizu K, Satuito C, Fusetani N (1996) Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J Exp Boil 199:2131–2137Google Scholar
  35. Ohkawa K, Nishida A, Yamamoto H, Waite JH (2004) A glycosylated byssal precursor protein from the green mussel Perna viridis with modified DOPA side-chains. Biofouling 20:101–115PubMedCrossRefGoogle Scholar
  36. Ooka AA, Garrell RL (2000) Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytulus edulis. Biopolymers 57:92–102CrossRefGoogle Scholar
  37. Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192PubMedCrossRefGoogle Scholar
  38. Sagert J, Sun C, Waite JH (2006) Chemical subtleties of mussel and polychaete holdfasts. In: Smith AM, Callow JA (eds) Biological adhesives. Springer-Verlag, Berlin, pp 125–140CrossRefGoogle Scholar
  39. Saroyan JR, Lindner E, Dooley CA (1970) Repair and reattachment in the balanidae as related to their cementing mechanism. Biol Bull 139:333–350CrossRefGoogle Scholar
  40. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed 43:448–450CrossRefGoogle Scholar
  41. Stevens MJ, Steren RE, Hlady V, Stewart RJ (2007) Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23:5045–5049PubMedCrossRefGoogle Scholar
  42. Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a sold foam. J Exp Biol 207:4727–4734PubMedCrossRefGoogle Scholar
  43. Suzuki R, Mori Y, Kamino K, Yamazaki T (2005) NMR assignment of the barnacle cement protein mrcp-20k. J Biomol NMR 32:257PubMedCrossRefGoogle Scholar
  44. Taylor SW, Waite JH (1994) trans-2,3-cis-3,4-Dihydroxyproline, a new naturally occurring amino acid, is the sixth residue in the tandemly repeated consensus decapeptides of an adhesive protein from Mytilus edulis. J Am Chem Soc 116:10803–10804CrossRefGoogle Scholar
  45. Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, Kamino K (2007) Identification and functional characterization of a novel barnacle cement protein cp-19k. FEBS J 274:4336–4346PubMedCrossRefGoogle Scholar
  46. Von Byern J, Klepal W (2006) Adhesive mechanisms in cephalopods: a review. Biofouling 22:329–338PubMedCrossRefGoogle Scholar
  47. Waite JH (1986) Mussel glue from Mytilus californianus Conrad: a comparative study. J Comp Physiol B 156:491–496PubMedCrossRefGoogle Scholar
  48. Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhes 7:9–14CrossRefGoogle Scholar
  49. Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:352–354CrossRefGoogle Scholar
  50. Waite JH, Qin XX (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893PubMedCrossRefGoogle Scholar
  51. Waite JH, Vaccaaro E, Sun C, Lucas JM (2002) Elastomeric gradients: a hedge against stress concentration in marine holdfast? Phil Trans R Soc Lond B 357:143–153CrossRefGoogle Scholar
  52. Waite JH, Lichtenegger HC, Stucky GD, Hansma P (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43:7653–7662PubMedCrossRefGoogle Scholar
  53. Waite JH, Anderson NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81:297–317CrossRefGoogle Scholar
  54. Walker G (1970) The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus haemri. Mar Biol 7:239–248CrossRefGoogle Scholar
  55. Weigemann M, Watermann B (2003) Peculiarities of barnacle adhesive cured on non-stick surfaces. J Adhes Sci Technol 17:1957–1977CrossRefGoogle Scholar
  56. Werneke SW, Swann C, Farquharson LA, Hamilton KS, Smith AM (2007) The role of metals in molluscan adhesive gels. J Exp Biol 210:2137–2145PubMedCrossRefGoogle Scholar
  57. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769–4774PubMedCrossRefGoogle Scholar
  58. Williams T, Marumo K, Waite JH, Henkens RW (1989) Mussel glue protein has an open conformation. Arch Biochem Biophys 269:415–422PubMedCrossRefGoogle Scholar
  59. Yamamoto H, Saitoh A, Ohkawa K (2003) Synthesis of sequential polypeptides containing O-phospho-L-serine. Macromol Biosci 3:354–363CrossRefGoogle Scholar
  60. Yu M, Deming TJ (1998) Synthetic polypeptide mimics of marine adhesives. Macromol 31:4739–4745CrossRefGoogle Scholar
  61. Yu M, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826CrossRefGoogle Scholar
  62. Zhang W, Laursen RA (1998) Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J Biol Chem 273:34806–34812PubMedCrossRefGoogle Scholar
  63. Zhao H, Waite JH (2006) Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45:14223–14231PubMedCrossRefGoogle Scholar
  64. Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158PubMedCrossRefGoogle Scholar
  65. Zhao X, Zhang S (2004) Fabrication of molecular materials using peptide construction motifs. Trends Biotech 22:470–476CrossRefGoogle Scholar
  66. Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Marine Biotechnology InstituteKamaishi, IwateJapan

Personalised recommendations