Marine Biotechnology

, Volume 10, Issue 1, pp 1–12 | Cite as

A Review of the Functionality of Probiotics in the Larviculture Food Chain

  • Nguyen Thi Ngoc Tinh
  • Kristof Dierckens
  • Patrick Sorgeloos
  • Peter Bossier
Invited Review

Abstract

During the past two decades, the use of probiotics as an alternative to the use of antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larviculture. This article reviews the studies on probiotics in larviculture, focusing on the current knowledge of their in vivo mechanisms of action. The article highlights that the in vivo mechanisms of action largely remain to be unravelled. Several methodologies are suggested for further in vivo research, including studies on gut microbiota composition, the use of gnotobiotic animals as test models, and the application of molecular techniques to study host–microbe and microbe–microbe interactions.

Keywords

aquaculture gnotobiotic gut microbiota host–microbe interaction larviculture mechanism of action molecular techniques probiotic 

References

  1. Aiba Y, Suzuki N, Kabir AMA, Takagi A, Koga Y (1998) Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93, 2097–2101PubMedCrossRefGoogle Scholar
  2. Atlas RM (1999) Probiotics—snake oil for the new millennium? Environ Microbiol 1, 375–382CrossRefGoogle Scholar
  3. Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114, 173–186PubMedCrossRefGoogle Scholar
  4. Bartilson M, Marra A, Christine J, Asundi JS, Schneider WP, Hromockyj AE (2001) Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol Microbiol 39, 126–135PubMedCrossRefGoogle Scholar
  5. Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 2–7PubMedCrossRefGoogle Scholar
  6. Berg RD (1998) Probiotics, prebiotics or “conbiotics”? Trends Microbiol 6, 89–92PubMedCrossRefGoogle Scholar
  7. Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281, 36269–36279PubMedCrossRefGoogle Scholar
  8. Bruhn JB, Dalsgaard I, Nielsen KF, Buchholtz C, Larsen JL, Gram L (2005) Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria. Dis Aquat Org 65, 43–52PubMedCrossRefGoogle Scholar
  9. Bruno DW (1988) The relationship between auto-agglutination, cell surface hydrophobicity and virulence of the fish pathogen Renibacterium salmoninarum. FEMS Microbiol Lett 51, 135–140CrossRefGoogle Scholar
  10. Burr G, Gatlin D, Ricke S (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquacult Soc 36, 425–436CrossRefGoogle Scholar
  11. Cahu CL, Zambonino Infante JL, Peres A, Quazuguel P, Le Gall MM (1998) Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161, 479–489CrossRefGoogle Scholar
  12. Cunningham CO (2002) Molecular diagnosis of fish and shellfish diseases: present status and potential use in disease control. Aquaculture 206, 19–55CrossRefGoogle Scholar
  13. Dahm R, Geisler R (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol 8, 1–17CrossRefGoogle Scholar
  14. De Diego JG, Rodriguez FD, Lorenzo JLR, Grappin P, Cervantes E (2006) cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J Plant Physiol 163, 452–462PubMedCrossRefGoogle Scholar
  15. Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240, 69–88CrossRefGoogle Scholar
  16. Defoirdt T, Bossier P, Sorgeloos P, Verstraete W (2005) The impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and Vibrio harveyi on their virulence towards gnotobiotically cultured Artemia franciscana. Environ Microbiol 7, 1239–1247PubMedCrossRefGoogle Scholar
  17. Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing—disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72, 6419–6423PubMedCrossRefGoogle Scholar
  18. Dopazo CP, Lemos ML, Lodeiros C, Bolinches J, Barja JL, Toranzo AE (1988) Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J Appl Bacteriol 65, 97–101PubMedGoogle Scholar
  19. Douillet P, Langdon CJ (1993) Effects of marine bacteria on the culture of axenic oyster Crassostrea gigas (Thunberg) larvae. Biol Bull 184, 36–51CrossRefGoogle Scholar
  20. Eddy SD, Jones SH (2002) Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery. Aquaculture 211, 9–28CrossRefGoogle Scholar
  21. Erasmus JH, Cook PA, Coyne VE (1997) The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 155, 377–386CrossRefGoogle Scholar
  22. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112, 1291–1299PubMedCrossRefGoogle Scholar
  23. Fjellheim AJ (2006) Selection and Administration of Probiotic Bacteria to Marine Fish Larvae. PhD thesis, Norwegian University of Science and Technology, 217 ppGoogle Scholar
  24. Fredrickson AG, Stephanopoulos G (1981) Microbial competition. Science 213, 972–979PubMedCrossRefGoogle Scholar
  25. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66, 365–378PubMedGoogle Scholar
  26. Garcia AT, Olmos JS (2007) Quantification by fluorescent in situ hybridization of bacteria associated with Litopenaeus vannamei larvae in Mexican shrimp hatchery. Aquaculture 262, 211–218CrossRefGoogle Scholar
  27. Gatesoupe FJ (1997) Siderophore production and probiotic effect of Vibrio sp. associated with turbot larvae, Scophthalmus maximus. Aquatic Liv Res 10, 239–246CrossRefGoogle Scholar
  28. Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassosstrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169, 111–120CrossRefGoogle Scholar
  29. Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191, 259–270CrossRefGoogle Scholar
  30. Gomez-Gil B, Soto-Rodriguez S, Garcia-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. Microbiol SGM 150, 1769–1777CrossRefGoogle Scholar
  31. Gram L, Lovold T, Nielsen J, Melchiorsen J, Spanggaard B (2001) In vitro antagonism of the probiont Pseudomonas fluorescens strain AH2 against Aeromonas salmonicida does not confer protection of salmon against furunculosis. Aquaculture 199, 1–11CrossRefGoogle Scholar
  32. Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold water fish. Microb Ecol 38, 1–26PubMedCrossRefGoogle Scholar
  33. Hegarty MJ, Jones JM, Wilson ID, Barker GL, Coghill JA, Sanchez-Baracaldo P, Liu GQ, Buggs RJA, Abbott RJ, Edwards KJ, Hiscock SJ (2005) Development of anonymous cDNA microarrays to study changes to the Senecio floral transcriptome during hybrid speciation. Mol Ecol 14, 2493–2510PubMedCrossRefGoogle Scholar
  34. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186, 6902–6914PubMedCrossRefGoogle Scholar
  35. Hooi DSW, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72, 6463–6470PubMedCrossRefGoogle Scholar
  36. Hossain H, Tchatalbachev S, Chakraborty T (2006) Host gene expression profiling in pathogen-host interactions. Curr Opin Immunol 18, 422–429PubMedCrossRefGoogle Scholar
  37. Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25, 633–642CrossRefGoogle Scholar
  38. Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiol Immunol 32, 67–73PubMedGoogle Scholar
  39. Lategan MJ, Booth W, Shimmon R, Gibson LF (2006) An inhibitory substance produced by Aeromonas media A199, an aquatic probiotic. Aquaculture 254, 115–124CrossRefGoogle Scholar
  40. Lee YK, Puong KY (2002) Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br J Nutr 88, 101–108CrossRefGoogle Scholar
  41. Lee YK, Ho PS, Low CS, Arvilommi H, Salminen S (2004) Permanent colonization of Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Appl Environ Microbiol 70, 670–674PubMedCrossRefGoogle Scholar
  42. Maeda M (1994) Biocontrol of the larvae rearing biotope in aquaculture. Bull Natl Res Inst Aquacult 1, 71–74Google Scholar
  43. Maeda M, Liao IC (1992) Effect of bacterial population on the growth of a prawn larva, Penaeus monodon. Bull Natl Res Inst Aquacult 21, 25–29Google Scholar
  44. Magnelli P, Cipollo JF, Abeijon C (2002) A refined method for the determination of Saccharomyces cerevisiae cell wall composition and â-1,6-glucan fine structure. Anal Biochem 301, 136–150PubMedCrossRefGoogle Scholar
  45. Maia OB, Duarte R, Silva AM, Cara DC, Nicoli JR (2001) Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Vet Microbiol 79, 183–189PubMedCrossRefGoogle Scholar
  46. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg SA (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145, 283–291PubMedCrossRefGoogle Scholar
  47. Marques A, Dinh TT, Ioakeimidis C, Huys G, Swings J, Verstraete W, et al. (2005) Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Appl Environ Microbiol 71, 4307–4317PubMedCrossRefGoogle Scholar
  48. Marques A, Dhont J, Sorgeloos P, Bossier P (2006a) Immunostimulatory nature of β-glucans and baker's yeast in gnotobiotic Artemia challenge tests. Fish Shellfish Immunol 20, 682–692PubMedCrossRefGoogle Scholar
  49. Marques A, Ollevier F, Verstraete W, Sorgeloos P, Bossier P (2006b) Gnotobiotically grown aquatic animals: opportunities to investigate host-microbe interactions. J Appl Microbiol 100, 903–918PubMedCrossRefGoogle Scholar
  50. Marques A, Toi HT, Sorgeloos P, Bossier P (2006c) Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258, 116–126CrossRefGoogle Scholar
  51. Marques A, Toi HT, Verstraete W, Dhont J, Sorgeloos P, Bossier P (2006d) Use of selected bacteria and yeast to protect gnotobiotic Artemia against different pathogens. J Exp Mar Biol Ecol 334, 20–30CrossRefGoogle Scholar
  52. Miyawaki A (2002) Green fluorescent protein-like proteins in reef anthozoa animals. Cell Struct Funct 27, 343–347PubMedCrossRefGoogle Scholar
  53. Morohoshi T, Inaba T, Kato N, Kanai K, Ikeda T (2004) Identification of quorum-sensing signal molecules and the LuxRI homologs in fish pathogen Edwardsiella tarda. J Biosci Bioeng 98, 274–281PubMedGoogle Scholar
  54. Mulero I, Garcia-Ayala A, Meseguer J, Mulero V (2007) Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish: a minireview. Aquaculture 268, 244–250CrossRefGoogle Scholar
  55. Muroga K, Higashi M, Keitoku H (1987) The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schlegeli) at larval and juvenile stages. Aquaculture 65, 79–88CrossRefGoogle Scholar
  56. Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1, 27–46PubMedCrossRefGoogle Scholar
  57. Nikoskelainen S, Salminen S, Bylund G, Ouwehand AC (2001) Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67, 2430–2435PubMedCrossRefGoogle Scholar
  58. Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200, 223–248CrossRefGoogle Scholar
  59. Olafsen JA, Hansen GH (1992) Intact antigen uptake by intestinal epithelial cells of marine fish larvae. J Fish Biol 40, 141–156CrossRefGoogle Scholar
  60. Peulen O, Deloyer P, Grandfils C, Loret S, Dandrifosse G (2000) Intestinal maturation induced by spermine in young animals. Livestock Prod Sci 66, 109–120CrossRefGoogle Scholar
  61. Prioult G, Fliss I, Pecquet S (2003) Effect of probiotic bacteria on induction and maintenance of oral tolerance to beta-lactoglobulin in gnotobiotic mice. Clin Diagnost Lab Immunol 10, 787–792CrossRefGoogle Scholar
  62. Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M, Gram L (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27, 350–359PubMedCrossRefGoogle Scholar
  63. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101, 4596–4601PubMedCrossRefGoogle Scholar
  64. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433PubMedCrossRefGoogle Scholar
  65. Rawls JF, Mahowald MA, Goodman AL, Trent CM, Gordon JI (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc Natl Acad Sci USA 104, 7622–7627PubMedCrossRefGoogle Scholar
  66. Regunathan C, Wesley SG (2004) Control of Vibrio spp. in shrimp hatcheries using the green algae Tetraselmis suecica. Asian Fish Sci 17, 147–157Google Scholar
  67. Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155, 207–221CrossRefGoogle Scholar
  68. Rico-Mora R, Voltolina D, Villaescusa-Celaya JA (1998) Biological control of Vibrio alginolyticus in Skeletonema costatum (Bacillariophyceae) cultures. Aquacult Eng 19, 1–6CrossRefGoogle Scholar
  69. Ringø E (1999) Does Carnobacterium divergens isolated from Atlantic salmon, Salmo salar L., colonize the gut of early developing turbot, Scophthalmus maximus L., larvae? Aquacult Res 30, 229–232CrossRefGoogle Scholar
  70. Ringø E, Birkbeck TH (1999) Intestinal microflora of fish larvae and fry. Aquacult Res 30, 73–93CrossRefGoogle Scholar
  71. Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268, 251–264CrossRefGoogle Scholar
  72. Riquelme C, Araya R, Vergara N, Rojas A, Guaita M, Candia M (1997) Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 154, 17–26CrossRefGoogle Scholar
  73. Riquelme C, Araya R, Escribano R (2000) Selective incorporation of bacteria by Argopecten purpuratus larvae: implications for the use of probiotics in culturing systems of the Chilean scallop. Aquaculture 181, 25–36CrossRefGoogle Scholar
  74. Ritchie AJ, Jansson A, Stallberg J, Nilsson P, Lysaght P, Cooley MA (2005) The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-l-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect Immun 73, 1648–1655PubMedCrossRefGoogle Scholar
  75. Rodriguez-Lanetty M, Phillips WS, Weis VM (2006) Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genom 7, art no 23Google Scholar
  76. Ruiz-Ponte C, Samain JF, Sanchez JL, Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 1, 52–59PubMedCrossRefGoogle Scholar
  77. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103, 10011–10016PubMedCrossRefGoogle Scholar
  78. Sonnenburg JL, Chen CTL, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLOS Biol 4, 1–14CrossRefGoogle Scholar
  79. Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel KF, Gram L (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182, 1–15CrossRefGoogle Scholar
  80. Strevett KA, Chen G (2003) Microbial surface thermodynamics and application. Res Microbiol 154, 329–335PubMedCrossRefGoogle Scholar
  81. Strøm E, Ringø E (1993) “Changes in the bacterial composition of early developing cod, Gadus morhua (L.) larvae following inoculation of Lactobacillus plantarum into the water”. In: Physiology and Biochemical Aspects of Fish Development, Walther BT, Fyhn HJ, eds (Bergen, Norway: University of Bergen), pp 226–228Google Scholar
  82. Temmerman R, Scheirlinck I, Huys G, Swings J (2003) Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69, 220–226PubMedCrossRefGoogle Scholar
  83. Thomas GL, Bohner CM, Williams HE, Walsh CM, Ladlow M, Welch M, Bryant CE, Spring DR (2006) Immunomodulatory effects of Pseudomonas aeruginosa quorum sensing small molecule probes on mammalian macrophages. Mol Biosyst 2, 132–137PubMedCrossRefGoogle Scholar
  84. Tinh NTN, Phuoc NN, Dierckens K, Sorgeloos P, Bossier P (2006) Gnotobiotically grown rotifer Brachionus plicatilis sensu strictu as a tool for evaluation of microbial functions and nutritional values of different food types. Aquaculture 253, 421–432CrossRefGoogle Scholar
  85. Tinh NTN, Linh ND, Wood TK, Dierckens K, Sorgeloos P, Bossier P (2007) Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol 103, 194–203PubMedCrossRefGoogle Scholar
  86. Tovar-Ramirez D, Zambonino J, Cahu C, Gatesoupe FJ, Vazquez-Juarez R, Lesel R (2002) Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 204, 113–123CrossRefGoogle Scholar
  87. Tovar-Ramirez D, Infante JZ, Cahu C, Gatesoupe FJ, Vazquez-Juarez R (2004) Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture 234, 415–427CrossRefGoogle Scholar
  88. Verschuere L, Rombaut G, Huys G, Dhont J, Sorgeloos P, Verstraete W (1999) Microbial control of the culture of Artemia juveniles through preemptive colonization by selected bacterial strains. Appl Environ Microbiol 65, 2527–2533PubMedGoogle Scholar
  89. Verschuere L, Heang H, Criel G, Sorgeloos P, Verstraete W (2000a) Selected bacterial strains protect Artemia spp. from the pathogenic effects of Vibrio proteolyticus CW8T2. Appl Environ Microbiol 66, 1139–1146PubMedCrossRefGoogle Scholar
  90. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000b) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64, 655–671PubMedCrossRefGoogle Scholar
  91. Villamil L, Figueras A, Planas M, and Novoa B (2003) Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture 219, 43–56CrossRefGoogle Scholar
  92. Vine NG, Leukes WD, Kaiser H (2004a) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231, 145–152PubMedCrossRefGoogle Scholar
  93. Vine NG, Leukes WD, Kaiser H, Daya S, Baxter J, Hecht T (2004b) Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27, 319–326PubMedCrossRefGoogle Scholar
  94. Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30, 404–427PubMedCrossRefGoogle Scholar
  95. Wache Y, Auffray F, Gatesoupe FJ, Zambonino J, Gayet V, Labbe L, Quentel C (2006) Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorynchus mykiss, fry. Aquaculture 258, 470–478CrossRefGoogle Scholar
  96. Wilson A, Horne MT (1986) Detection of A-protein in Aeromonas salmonicida and some effects of temperature on A-layer assembly. Aquaculture 56, 23–27CrossRefGoogle Scholar
  97. Yen Chen B, McClane A, Fisher DJ, Rood JI, Gupta P (2005) Construction of an alpha toxin gene knockout mutant of Clostridium perfringens Type A by use of a mobile group II intron. Appl Environ Microbiol 71, 7542–7547CrossRefGoogle Scholar
  98. Zherdmant MT, San Miguel L, Serrano J, Donoso E, Miahle E (1997) Estudio y utilización de probióticos en el Ecuador. Panorama Acuícola 2, 28Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nguyen Thi Ngoc Tinh
    • 1
  • Kristof Dierckens
    • 1
  • Patrick Sorgeloos
    • 1
  • Peter Bossier
    • 1
  1. 1.Laboratory of Aquaculture and Artemia Reference CenterGhent UniversityGentBelgium

Personalised recommendations