Marine Biotechnology

, Volume 10, Issue 2, pp 128–132 | Cite as

Isolation and Characterization of Two Groups of Novel Marine Bacteria Producing Violacein

  • Shuichi Yada
  • Yi Wang
  • Yanshuang Zou
  • Keiko Nagasaki
  • Kakushi Hosokawa
  • Issey Osaka
  • Ryuichi Arakawa
  • Keiich Enomoto
Short Communication

Abstract

Thirteen strains of novel marine bacteria producing a purple pigment were isolated from the Pacific coast of Japan. They were divided into two groups based on their 16S ribosomal RNA gene sequences, and both groups of bacteria belonged to the genus Pseudoalteromonas. The UV-visible spectrum of the pigment was identical to those of violacein, a pigment produced by several species of bacteria including Chromobacterium violaceum, an opportunistic pathogen. Further analysis of the chemical structure of the pigment by mass spectroscopy and nuclear magnetic resonance spectroscopy showed that the pigment was violacein. The high purity of violacein in the crude extract enabled us to employ simple and nonpolluting procedures to purify the pigment. Isolated bacteria may be useful as a C. violaceum substitute for the safe production of violacein.

Keywords

pigment Pseudoalteromonas violacein 

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215, 403–410PubMedGoogle Scholar
  2. Bergey DH (1994) In: Bergey’s Manual of Determinative Bacteriology, 9th ed., Holt JG, Krieg NR, Sneath PA, eds. (Baltimore: Williams & Wilkins)Google Scholar
  3. Durán N, Menck CF (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27, 201–222PubMedCrossRefGoogle Scholar
  4. Enger Ø, Nygaard H, Solberg M, Schei G., Nielsen J, Dundas I (1987) Characterization of Alteromonas denitrificans sp. nov.. Int J Syst Bacteriol 37, 416–421CrossRefGoogle Scholar
  5. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104, 1459–1464PubMedCrossRefGoogle Scholar
  6. Hiraishi A (1992) Direct automated sequencing of 16S rRNA gene amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213PubMedGoogle Scholar
  7. Hoshino T, Kondo T, Uchiyama T, Ogasawara N (1987) Biosynthesis of violacein: a novel rearrangement in tryptophan metabolism with 1, 2-shift of the indole ring. Agric Biol Chem 51, 965–968Google Scholar
  8. Kawauchi K, Shibutani K, Yagisawa H, Kamata H, Nakatsuji S, Anzai H, Yokoyama Y, Ikegami Y, Moriyama Y, Hirata H (1997) A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans. Biochem Biophys Res Commun 237, 543–547PubMedCrossRefGoogle Scholar
  9. Kobayashi H, Nogi Y, Horikoshi K (2007) New violet 3,3-bipyridyl pigment purified from deep-sea microorganism Shewanell violacea DSS12. Extremophiles 11, 245–250PubMedCrossRefGoogle Scholar
  10. Laatsch H, Thomson RH, Cox PJ (1984) Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein. J Chem Soc Perkin Trans II 1331–1339Google Scholar
  11. Leon LL, Miranda CC, De Souza AO, Durán N (2001) Antileshmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48, 449–450PubMedCrossRefGoogle Scholar
  12. MacCarthy SA, Sakata T, Kakimoto D, Johnson RM (1985) Production and isolation of purple pigment by Alteromonas luteoviolacea. Bull Japan Soc Sci Fish 51, 479–484Google Scholar
  13. Margalith PZ (1992) Pigment Microbiology (London: Chapman & Hall)Google Scholar
  14. Melo PS, Maria SS, Vidal BC, Haun M, Durán N (2000) Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cell Dev Biol Anim 36, 539–543PubMedCrossRefGoogle Scholar
  15. Melo PS, Justo GZ, de Azevedo MBM, Durán N, Haun M (2003) Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cell. Toxicology 186, 217–225PubMedCrossRefGoogle Scholar
  16. Montaner B, Perez-Tomas R (2003) The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 3, 57–65PubMedCrossRefGoogle Scholar
  17. Rettori D, Durán N (1998) Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J Microbiol Biotechnol 14, 685–688CrossRefGoogle Scholar
  18. Richard C (1993) Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions. Bull Soc Pathol Exot 86, 169–173PubMedGoogle Scholar
  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425PubMedGoogle Scholar
  20. Taga N (1968) Some ecological aspects of marine bacteria in the Kuroshio current. Bull Misaki Mar Biol Inst Kyoto Univ 12, 65–76Google Scholar
  21. Yada S, Ohba M, Enomoto K (2003) Analysis of bacterial species in the Muroto deep seawater. Deep Ocean Water Res (in Japanese) 4, 47–56Google Scholar
  22. Zimmermann K, von Lengerken J (1979) Analytical methods for nitrate and nitrite determination in foods. 3. Spectrophotometric determination of nitrate and nitrite using sulphanilic acid/1-naphylamine, and of nitrite using resorcinol/zirconium (IV) oxychloride. Nahrung (in German) 23, 929–934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shuichi Yada
    • 1
  • Yi Wang
    • 1
  • Yanshuang Zou
    • 1
  • Keiko Nagasaki
    • 1
  • Kakushi Hosokawa
    • 1
  • Issey Osaka
    • 2
  • Ryuichi Arakawa
    • 2
  • Keiich Enomoto
    • 1
  1. 1.Department of Environmental Systems EngineeringKochi University of TechnologyKochiJapan
  2. 2.Department of Applied ChemistryKansai UniversityOsakaJapan

Personalised recommendations