Advertisement

Marine Biotechnology

, Volume 9, Issue 6, pp 776–785 | Cite as

Antifouling Activity of Bromotyrosine-Derived Sponge Metabolites and Synthetic Analogues

  • Sofia Ortlepp
  • Martin Sjögren
  • Mia Dahlström
  • Horst Weber
  • Rainer Ebel
  • RuAngelie Edrada
  • Carsten Thoms
  • Peter Schupp
  • Lars Bohlin
  • Peter Proksch
Original Article

Abstract

Eighteen brominated sponge-derived metabolites and synthetic analogues were analyzed for antilarval settlement of Balanus improvisus. Only compounds exhibiting oxime substituents including bastadin-3 (4), −4 (1), −9 (2), and −16 (3), hemibastadin-1 (6), aplysamine-2 (5), and psammaplin A (10) turned out to inhibit larval settling at 1 to 10 μM. Analogues of hemibastadin-1 (6) were synthesized and tested for structure activity studies. Debromohemibastadin-1 (8) inhibited settling of B. improvisus, albeit at lower concentrations than hemibastadin-1 (6). Both 6 and 8 also induced cyprid mortality. 5,5′-dibromohemibastadin-1 (7) proved to be nontoxic, but settlement inhibition was observed at 10 μM. Tyrosinyltyramine (9), lacking the oxime function, was not antifouling active and was non-toxic at 100 μM. Hemibastadin-1 (6) and the synthetic products showed no general toxicity when tested against brine shrimp larvae. In contrast to the lipophilic psammaplin A (10), the hydrophilic sulfated psammaplin A derivative (11) showed no antifouling activity even though it contains an oxime group. We therefore hypothesize that the compound needs to cross membranes (probably by diffusion) and that the target for psammaplin A lies intracellularly.

Keywords

antifouling Balanus improvisus  bastadins bastadin analogues bromotyrosine derivatives natural products 

Notes

Acknowledgments

We thank BMBF (BiotechMarin) for financial support. C. Thoms acknowledges a Feodor Lynen Fellowship by the Alexander von Humboldt-Foundation, Bonn, Germany and P. Schupp acknowledges support by the National Institutes of Health MBRS SCORE grant S06-GM44796.

References

  1. Alzieu C, Sanjuan J, Deltreil JP, Borel, M (1986) Tin contamination in Arcachon bay—effects on oyster shell anomalies. Mar Pollut Bull 17, 494–498CrossRefGoogle Scholar
  2. Alzieu C, Sanjuan J, Michel P, Borel M, Dreno JP (1989) Monitoring and assessment of butyltins in atlantic coastal waters. Mar Pollut Bull 20, 22–26CrossRefGoogle Scholar
  3. Arabshahi L, Schmitz FJ (1987) Brominated tyrosine metabolites from an unidentified sponge. J Org Chem 52, 3584–3586CrossRefGoogle Scholar
  4. Armstrong PB, Quigley JP (1999) Alpha(2)-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol 23, 375–390PubMedCrossRefGoogle Scholar
  5. Assmann M, Lichte E, Pawlik JR, Kock M (2000) Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar Ecol Prog Ser 207, 255–262CrossRefGoogle Scholar
  6. Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P (2000) Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvisus. J Exp Mar Biol Ecol 251, 59–83PubMedCrossRefGoogle Scholar
  7. Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20, 43–51PubMedCrossRefGoogle Scholar
  8. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23, 26–78PubMedCrossRefGoogle Scholar
  9. Borders DB, Morton GO, Wetzel ER (1974) Structure of a novel bromine compound isolated from a sponge. Tetrahedron Lett 31, 2709–2712CrossRefGoogle Scholar
  10. Butler MS, Lim TK, Capon RJ, Hammond LS (1991) The bastadins revisited—new chemistry from the Australian marine sponge Ianthella basta. Austral J Chem 44, 287–296CrossRefGoogle Scholar
  11. Carballo J, Hernandez-Inda Z, Perez P, Garcia-Gravalos M (2002) A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotech 2, 17–21CrossRefGoogle Scholar
  12. Carney JR, Scheuer PJ, Kellyborges M (1993) A new bastadin from the sponge Psammaplysilla purpurea. J Nat Prod 56, 153–157PubMedCrossRefGoogle Scholar
  13. Cimino G, Derosa S, Destefano S, Self R, Sodano G (1983) The bromo-compounds of the true sponge Verongia aerophoba. Tetrahedron Lett 24, 3029–3032CrossRefGoogle Scholar
  14. Clare AS (1996a) Natural product antifoulants: status and potential. Biofouling 9, 211–229Google Scholar
  15. Clare AS (1996b) Signal transduction in barnacle settlement: calcium re-visited. Biofouling 10, 141–159Google Scholar
  16. Dahlström M, Lindgren F, Berntsson K, Sjögren M, Martensson LGE, Jonsson PR, Elwing H (2005) Evidence for different pharmacological targets for imidazoline compounds inhibiting settlement of the barnacle Balanus improvisus. J Exp Zool A 303A, 551–562CrossRefGoogle Scholar
  17. Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22, 43–54PubMedCrossRefGoogle Scholar
  18. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21, 94–104PubMedCrossRefGoogle Scholar
  19. IMO (2001) Resolution on early and effective application of the international convention on the control of harmful antifouling systems on ships. Resolution A928(22) IMOGoogle Scholar
  20. Jaspars M, Rali T, Laney M, Schatzman RC, Diaz MC, Schmitz FJ, Pordesimo EO, Crews P (1994) The search for inosine 5′-phosphate dehydrogenase (IMPDH) inhibitors from marine sponges—evaluation of the bastadin alkaloids. Tetrahedron 50, 7367–7374CrossRefGoogle Scholar
  21. Kazlauskas R, Lidgard RO, Murphy PT, Wells RJ (1980) Brominated tyrosine-derived metabolites from the sponge Ianthella basta. Tetrahedron Lett 21, 2277–2280CrossRefGoogle Scholar
  22. Kelly SR, Garo E, Jensen PR, Fenical W, Pawlik JR (2005) Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquat Microb Ecol 40, 191–203CrossRefGoogle Scholar
  23. Kobayashi J, Tsuda M, Murayama T, Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S (1990) Ageliferins, potent actomyosin atpase activators from the Okinawan marine sponge Agelas sp. Tetrahedron 46, 5579–5586CrossRefGoogle Scholar
  24. Kotoku N, Tsujita H, Hiramatsu A, Mori C, Koizumi N, Kobayashi M (2005) Efficient total synthesis of bastadin 6, an anti-angiogenic brominated tyrosine-derived metabolite from marine sponge. Tetrahedron 61, 7211–7218CrossRefGoogle Scholar
  25. Mack MM, Molinski TF, Buck ED, Pessah IN (1994) Novel modulators of skeletal-muscle Fkbp12 calcium-channel complex from Ianthella basta—role of Fkbp12 in channel gating. J Biol Chem 269, 23236–23249PubMedGoogle Scholar
  26. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp—a convenient general bioassay for active-plant constituents. Planta Med 45, 31–34CrossRefGoogle Scholar
  27. Miao S, Andersen RJ, Allen TM (1990) Cytotoxic metabolites from the sponge Ianthella basta collected in Papua-New-Guinea. J Nat Prod 53, 1441–1446PubMedCrossRefGoogle Scholar
  28. Park SK, Jurek J, Carney JR, Scheuer PJ (1994) 2 more bastadins, 16 and 17, from an Indonesian sponge Ianthella basta. J Nat Prod 57, 407–410CrossRefGoogle Scholar
  29. Pettit GR, Butler MS, Williams MD, Filiatrault MJ, Pettit RK (1996) Isolation and structure of hemibastadinols 1–3 from the Papua New Guinea marine sponge Ianthella basta. J Nat Prod 59, 927–934PubMedCrossRefGoogle Scholar
  30. Pham NB, Butler MS, Quinn RJ (2000) Isolation of psammaplin A 11′-sulfate and bisaprasin 11 ′-sulfate from the marine sponge Aplysinella rhax. J Nat Prod 63, 393–395PubMedCrossRefGoogle Scholar
  31. Pordesimo EO, Schmitz FJ (1990) New bastadins from the sponge Ianthella basta. J Org Chem 55, 4704–4709CrossRefGoogle Scholar
  32. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biot 59, 125–134CrossRefGoogle Scholar
  33. Renslo AR, Luehr GW, Gordeev MF (2006) Recent developments in the identification of novel oxazolidinone antibacterial agents. Bioorg Med Chem 14, 4227–4240PubMedCrossRefGoogle Scholar
  34. Rittschof D, Maki J, Mitchell R, Costlow JD (1986) Ion and neuropharmacological studies of barnacle settlement. Neth J Sea Res 20, 269–275CrossRefGoogle Scholar
  35. Shen XY, Perry TL, Dunbar CD, Kelly-Borges M, Hamann MT (1998) Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. J Nat Prod 61, 1302–1303PubMedCrossRefGoogle Scholar
  36. Sjögren M, Dahlström M, Göransson U, Jonsson PR, Bohlin L (2004a) Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barretti. Biofouling 20, 291–297PubMedCrossRefGoogle Scholar
  37. Sjögren M, Göransson U, Johnson AL, Dahlström M, Andersson R, Bergman J, Jonsson PR, Bohlin L (2004b) Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J Nat Prod 67, 368–372PubMedCrossRefGoogle Scholar
  38. Thompson JE (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis. I Biological evidence. Mar Biol 88, 23–26CrossRefGoogle Scholar
  39. Thompson JE, Walker RP, Faulkner DJ (1985) Screening and bioassays for biologically active substances from 40 marine sponge species from San Diego, California, USA. Mar Biol 88, 11–21CrossRefGoogle Scholar
  40. Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P (2004) Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. Z Naturforsch (C) 59, 113–122Google Scholar
  41. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996a) Ceratinamides A and B: new antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 52, 8181–8186CrossRefGoogle Scholar
  42. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996b) Ceratinamine: an unprecedented antifouling cyanoformamide from the marine sponge Pseudoceratina purpurea. J Ogr Chem 61, 2936–2937CrossRefGoogle Scholar
  43. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996c) Pseudoceratidine: a new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 37, 1439–1440CrossRefGoogle Scholar
  44. Wahl M (1989) Marine epibiosis. 1 Fouling and antifouling—some basic aspects. Mar Ecol Prog Ser 58, 175–189CrossRefGoogle Scholar
  45. Walker RP, Faulkner DJ, Vanengen D, Clardy J (1981) Sceptrin, an antimicrobial agent from the sponge Agelas-Sceptrum. J Am Chem Soc 103, 6772–6773CrossRefGoogle Scholar
  46. Xu HH, Chen X, Liao RA, Xie QL (2001) Isolation and crystal structure of 2-bromoaldisin. Chin J Struc Chem 20, 173–175Google Scholar
  47. Xynas R, Capon RJ (1989) 2 New bromotyrosine-derived metabolites from an Australian marine sponge, Aplysina sp. Austral J Chem 42, 1427–1433CrossRefGoogle Scholar
  48. Yamamoto H, Satuito CG, Yamazaki M, Natoyama K, Tachibana A, Fusetani N (1998) Neurotransmitter blockers as antifoulants against planktonic larvae of the barnacle Balanus amphitrite and the mussel Mytilus galloprovincialis. Biofouling 13, 69–82CrossRefGoogle Scholar
  49. Yamamoto H, Shimizu K, Tachibana A, Fusetani N (1999) Roles of dopamine and serotonin in larval attachment of the barnacle, Balanus amphitrite. J Exp Zool 284, 746–758PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sofia Ortlepp
    • 1
    • 2
  • Martin Sjögren
    • 2
  • Mia Dahlström
    • 3
  • Horst Weber
    • 4
  • Rainer Ebel
    • 1
  • RuAngelie Edrada
    • 1
  • Carsten Thoms
    • 5
  • Peter Schupp
    • 5
  • Lars Bohlin
    • 2
  • Peter Proksch
    • 1
  1. 1.Institute of Pharmaceutical Biology and BiotechnologyHeinrich-Heine UniversityDüsseldorfGermany
  2. 2.Division of Pharmacognosy, Department of Medicinal ChemistryBiomedical Centre Uppsala UniversityUppsalaSweden
  3. 3.Department of Cell and Molecular Biology, Tjärnö Marine Biological LaboratoryGöteborg UniversityStrömstadSweden
  4. 4.Pharmaceutical and Medicinal ChemistryHeinrich-Heine UniversityDüsseldorfGermany
  5. 5.University of Guam Marine LaboratoryMangilaoGuam

Personalised recommendations