Marine Biotechnology

, Volume 9, Issue 5, pp 561–576 | Cite as

Diversity of the Bacterial Communities Associated with the Azooxanthellate Deep Water Octocorals Leptogorgia minimata, Iciligorgia schrammi, and Swiftia exertia

  • Thomas B. Brück
  • Wolfram M. Brück
  • Lory Z. Santiago-Vázquez
  • Peter J. McCarthy
  • Russell G. KerrEmail author
Original Article


This study examined the microbiota associated with the marine azooxanthellate octocorals Leptogorgia minimata, Swiftia exertia, and Iciligorgia schrammi collected from moderate depths (45 m). Traditional aerobic plate culture, fluorescence in situ hybridization (FISH), and molecular identification of the 16S rDNA region were used for this purpose. In general, cultures were found to be selective for Gammaproteobacteria, Alphaproteobacteria, and Firmicutes. Interestingly, FISH counts for Firmicutes in the whole coral (holobiont) were near the detection limit of this assay, representing less than 6% of the total detectable microbiota in all counts. Proteobacteria, especially Alpha- and Gammaproteobacteria, made up the majority of the total microbiota in the holobionts. In addition, the absence of zooxanthellae in these three corals was confirmed by the use of polymerase chain reaction (PCR) and dinoflagellate-specific primers, and spectrophotometric chlorophyll pigment measurements. No evidence of zooxanthellae could be found in any of the corals by either of these techniques. This is the first study examining the microbiota marine octocorals, which grow at moderate depth (40 to 100 m) in the absence of direct sunlight.


azooxanthellate octocoral bacterial association cultured bacterial isolates  FISH 16S rRNA 



This work was funded by the Center of Excellence in Biomedical and Marine Biotechnology, the American Cancer Society RSG-97-170-04-CDD, Florida Sea Grant R/LR-MB-14, and the National Science Foundation grant 0119011. This research is based on work supported by the National Science Foundation under a grant awarded in 2003 to L.Z. Santiago-Vázquez (award 0310283). Wolfram Brück was funded through a postdoctoral fellowship from the Link Foundation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation, the American Cancer Society, or Florida Sea Grant. The experiments complied with the current laws of the United States. This is contribution number P200703 from the Center of Excellence in Biomedical and Marine Biotechnology and HBOI contribution number 1655.


  1. Abramson SN, Culver P, Kline T, Li Y, Guest P, Gutman L, Taylor P (1988) Lophotoxin and related coral toxins covalently label the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem 263, 18568–18573PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25, 3389–3402CrossRefGoogle Scholar
  3. Amann R, Binder BJ, Olson RJ, Crisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925PubMedGoogle Scholar
  4. Ashton M, Rosado W, Govind NS, Tosteson TR (2003) Culturable and non-culturable bacterial symbionts in the toxic dinoflagellates Ostreopsis lenticularis. Toxicon 42, 419–424PubMedCrossRefGoogle Scholar
  5. Bayer FM (1961) The Shallow Water Octocorallia of the West Indian Region. A Manual for Marine Biologists (The Hague, The Netherlands: Martinus Nijhoff)Google Scholar
  6. Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7, 1162–1174PubMedCrossRefGoogle Scholar
  7. Breitbart M, Bhagooli R, Griffin S, Johnston I, Rohwer F (2005) Microbial communities associated with skeletal tumours on Porites compressa. FEMS Microbiol Lett 243, 431–436PubMedCrossRefGoogle Scholar
  8. Brow MAD, Oldenburg MC, Lyamichev V, Heisler LM, Lyamicheva N, Hall JG, Eagan NJ, Olive DM, Smith LM, Fors L, Dahlberg JE (1996) Differentiation of bacterial 16S rRNA genes and intergenic regions and Mycobacterium tuberculosis katG genes by structure-specific endonuclease cleavage. J Clin Microbiol 34, 3129–3137PubMedGoogle Scholar
  9. Cervino JM, Hayes RL, Polson SW, Polson SC, Goreau TJ, Martinez RJ, Smith GW (2004) Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl Environ Microbiol 70, 6855–6864PubMedCrossRefGoogle Scholar
  10. Culver P, Jacobs RS (1981) Lophotoxin: a neuromuscular acting toxin from the sea whip (Lophogorgia rigida). Toxicon 19, 825–830PubMedCrossRefGoogle Scholar
  11. De A Epifanio R, Maia LF, Fenical W (2000) Chemical defenses of the endemic Brazilian gorgonian Lophogorgia violencia Pallas. J Braz Chem Soc 11, 584–591CrossRefGoogle Scholar
  12. Faulkner DJ, Harper MK, Salomon CE, Schmidt EW (1999) Localization of bioactive metabolites in marine sponges. Mem Queensl Mus 44, 167–173Google Scholar
  13. Fenical W (1993) Chemical studies of marine bacteria: developing a new resource. Chem Rev 63, 1673–1683CrossRefGoogle Scholar
  14. Fenical W, Okuda RK, Bandurraga MM, Culver P, Jacobs RS (1981) Lophotoxin: a neuromuscular toxin from the Pacific sea whips of the genus Lophogorgia. Science 212, 1512–1514PubMedCrossRefGoogle Scholar
  15. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70, 3724–3732PubMedCrossRefGoogle Scholar
  16. Gonzales JM, Whitman WB, Hodson RE, Moran MA (1996) Identifying numerically abundant culturable bacteria from complex communities: an example from lignin enrichment culture. Appl Environ Microbiol 62, 4433–4440Google Scholar
  17. Gunasekera AS, Sfanos KS, Harmody DK, Pomponi SA, McCarthy PJ, Lopez JV (2005) HBMMD: an enhanced database of the microorganisms associated with deeper water marine invertebrates. Appl Microbiol Biotechnol 66, 373–376PubMedCrossRefGoogle Scholar
  18. Harder T, Chun-Kwan-Lau S, Tam WY, Qian PY (2004) A bacterial culture-independent method to investigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bacterial populations. FEMS Microbiol Ecol 47, 93–99CrossRefGoogle Scholar
  19. Hentschel U, Hopke J, Horn M, Friederich AB, Wagener M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68, 4431–4440PubMedCrossRefGoogle Scholar
  20. Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37, 59–88PubMedGoogle Scholar
  21. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermentors. FEMS Microbiol Ecol 55, 167–177PubMedCrossRefGoogle Scholar
  22. Hill RT (2004) “Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery”. In: Microbial Diversity and Bioprospecting, Bull AT, ed. (Washington, D.C.: ASM Press) pp 177–190Google Scholar
  23. Imhoff JF, Stöhr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panacea. Prog Mol Subcell Biol 37, 35–57PubMedGoogle Scholar
  24. Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN (2005) Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Appl Environ Microbiol 71, 3483–3494PubMedCrossRefGoogle Scholar
  25. Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162, 51–62CrossRefGoogle Scholar
  26. Koike K, Jimbo M, Sakai R, Kaeriyama M, Muramoto K, Ogata T, Maruyama T, Kamiya H (2004) Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biol Bull 207, 80–86PubMedCrossRefGoogle Scholar
  27. Lesser MP, Mazel CH, Gorbunov MY, Falkowski GP (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000PubMedCrossRefGoogle Scholar
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke R, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucl Acids Res 32, 1363–1371PubMedCrossRefGoogle Scholar
  29. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15, 593–600Google Scholar
  30. McVeigh HP, Munro J, Embley TM (1996) Molecular evidence for the presence of novel actinomycete lineages in a temperate forest soil. J Indust Microbiol 17, 197–204CrossRefGoogle Scholar
  31. Meier H, Amann R, Ludwig W, Schleifer KH (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22, 186–196PubMedGoogle Scholar
  32. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Env Microbiol 68, 5005–5011CrossRefGoogle Scholar
  33. Mincer TJ, Spyere A, Jensen PR, Fenical W (2004) Phylogenetic analysis and diterpenoid production by marine bacteria of the genus Saprospira. Curr Microbiol 49, 300–307PubMedCrossRefGoogle Scholar
  34. Mitchelmore CL, Schwarz JA, Weis VM (2002) Development of symbiosis-specific genes as biomarkers for the early detection of cindarian-algal symbiosis breakdown. Mar Environ Res 54, 345–349PubMedCrossRefGoogle Scholar
  35. Murray RGE, Doetsch RN, Robinow CF (1994) “Determinative and cytological light microscopy”. In: Methods for General and Molecular Bacteriology, Gerhand P, Murray RGE, Wood WA, Krieg R, eds. (Washington, D.C.: ASM Press) pp 21–41Google Scholar
  36. Muscatine L, Goiran C, Land L, Jaubert J, Cuif J-P, Allemand D (2005) Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Prog Natl Acad Sci 102, 1525–1530CrossRefGoogle Scholar
  37. Mydlarz LD, Jacobs RS, Boehnlein JM, Kerr RG (2003) Pseudopterosin biosynthesis in Symbiodinium sp, the dinoflagellate symbiont of Pseudopterogorgia elizabethae. Chem Biol 10, 1051–1056PubMedCrossRefGoogle Scholar
  38. Penn K, Wu D, Eisen JA, Ward N (2006) Characterization of bacterial communities associated with deep-sea coral on Gulf of Alaska Seamounts. Appl Envir Microbiol 72, 1680–1683CrossRefGoogle Scholar
  39. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101, 16222–16227PubMedCrossRefGoogle Scholar
  40. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818PubMedCrossRefGoogle Scholar
  41. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations in acetone, methanol and ethanol solvents. Photosynth Res 89, 27–41PubMedCrossRefGoogle Scholar
  42. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56, 1750–1762PubMedGoogle Scholar
  43. Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated vs cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37, 900–912CrossRefGoogle Scholar
  44. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136(6), 969–977CrossRefGoogle Scholar
  45. Schuppler M, Wagner M, Schon G, Gobel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144, 249–259PubMedCrossRefGoogle Scholar
  46. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez JV (2005) A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28, 242–264PubMedCrossRefGoogle Scholar
  47. Sunde PT, Olsen I, Göbel UB, Theegarten D, Winter S, Debelian GJ, Tronstad L, Moter A (2003) Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology 149, 1095–1102PubMedCrossRefGoogle Scholar
  48. Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, Giovannoni SJ (1997) Bacterial diversity among small-subunit rDNA gene clones and cellular isolates from the same seawater sample. Appl Microbiol Biotechnol 66, 373–376Google Scholar
  49. Taylor M, Schupp PJ, Dahllöf I, Kjelleberg S, Steinber PD (2004) Host specificity in marine-sponge associated bacteria and potential implications for marine microbial diversity. Environ Microbiol 6, 121–130PubMedCrossRefGoogle Scholar
  50. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acid Res 22, 4673–4680CrossRefGoogle Scholar
  51. Tornoe C, Bai D, Holden-Dye L, Abramson SN, Sattelle DB (1995) Actions of neurotoxins (bungarotoxins, neosurugatoxin and lophotoxins) on insect and nematode nicotinic acetylcholine receptors. Toxicon 33, 411–424PubMedCrossRefGoogle Scholar
  52. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119, 1–11CrossRefGoogle Scholar
  53. Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S, Stahl DA (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour ɛ- and γ- proteobacterial endosymbionts. Environ Microbiol 7, 750–754PubMedCrossRefGoogle Scholar
  54. Verbarg S, Rheims H, Emus S, Fruhling A, Kroppenstedt RM, Stackebrandt E, Schumann P (2004) Erysipelothrix inopinata sp nov, isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam nov. Int J Syst Evol Microbiol 54, 221–225PubMedCrossRefGoogle Scholar
  55. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33, 545–551PubMedCrossRefGoogle Scholar
  56. Webster NS, Hill RT (2001) The culturable microbial community of the great barrier reef sponge Rhopaloides odorabilis is dominated by an α-Protobacterium. Mar Biol 138, 843–851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Thomas B. Brück
    • 1
  • Wolfram M. Brück
    • 2
  • Lory Z. Santiago-Vázquez
    • 1
  • Peter J. McCarthy
    • 2
  • Russell G. Kerr
    • 1
    • 3
    Email author
  1. 1.Center of Excellence in Biomedical and Marine Biotechnology, Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Center for Ocean ExplorationHarbor Branch Oceanographic InstitutionFort PierceUSA
  3. 3.Department of Chemistry, and Department of Biomedical SciencesUniversity of Prince Edward IslandCharlottetownCanada

Personalised recommendations