Marine Biotechnology

, Volume 9, Issue 3, pp 388–397 | Cite as

Novel Antifoulants: Inhibition of Larval Attachment by Proteases

  • Sergey DobretsovEmail author
  • Hairong Xiong
  • Ying Xu
  • Lisa A. Levin
  • Pei-Yuan Qian
Original Article


We investigated the effect of commercially available enzymes (α-amylase, α-galactosidase, papain, trypsin, and lipase) as well as proteases from deep-sea bacteria on the larval attachment of the bryozoan Bugula neritina L. The 50% effective concentrations (EC50) of the commercial proteases were 10 times lower than those of other enzymes. Crude proteases from six deep-sea Pseudoalteromonas species significantly decreased larval attachment at concentrations of 0.03 to 1 mIU ml−1. The EC50 of the pure protease from the bacterium Pseudoalteromonas issachenkonii UST041101-043 was close to 1 ng ml−1 (0.1 mIU ml−1). The protease and trypsin individually incorporated in a water-soluble paint matrix inhibited biofouling in a field experiment. There are certain correlations between production of proteases by bacterial films and inhibition of larval attachment. None of the bacteria with biofilms that induced attachment of B. neritina produced proteolytic enzymes, whereas most of the bacteria that formed inhibitive biofilms produced proteases. Our investigation demonstrated the potential use of proteolytic enzymes for antifouling defense.


antifouling deep-sea bacteria enzymes larval attachment proteases settlement 



We thank Dr. Hans-Uwe Dahms (Germany) for his useful suggestions on the manuscript; Dr. Tony Rathburn (USA) for facilitating collection of deep-sea samples; Dr. Linsheng Song (China) for his help in isolation of bacteria; and the crew, pilots, and the captain of the R/V Revelle and Jason II (USA) for their assistance. This work was supported by the West Coast National Undersea Research Center Grant UAF-04-0112 to L.A.L., a grant from China Ocean Mineral Resource Research and Development Association (COMRRDA 03/04.SC01), and a Central Allocation grant (CAS04/05.Sc01) to P.Y.Q., and partially by an Alexander von Humboldt Fellowship to S.D.


  1. Allermann K, Schneider I (2001) Antifouling paint composition comprising rosin and enzyme. PCT Patent application. WO 01/72911 A1Google Scholar
  2. Becker, K 1996Exopolysaccharide production and attachment strength of bacteria and diatoms on substrates with different surface tensionsMicrob Ecol322333CrossRefGoogle Scholar
  3. Bonaventura C, Bonaventura J, Hooper IR (2000) Anti-fouling methods using enzyme coatings, Dec. 7, 1999 Singapore. US Patent 5,998,200Google Scholar
  4. Burgess, JG, Boyd, KG, Armstrong, E, Jiang, Z, Yan, L, Berggren, M, May, U, Pisacane, T, Granmo, A, Adams, DR 2003The development of a marine natural product-based antifouling paintBiofouling19197205CrossRefGoogle Scholar
  5. Callow, ME, Callow, JA 2000Substratum location and zoospore behaviour in the fouling alga Enteromorpha Biofouling154956Google Scholar
  6. Callow, JA, Stanley, MS, Wetherbee, R, Callow, ME 2000Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: an overviewBiofouling16141150CrossRefGoogle Scholar
  7. Cooksey, KE, Wigglesworth-Cooksey, B 1995Adhesion of bacteria and diatoms to surfaces in the sea: a reviewAquat Microb Ecol98796Google Scholar
  8. Claire, AS 1998Towards nontoxic antifoulingJ Mar Biotechnol636Google Scholar
  9. Clare, AS, Freet, RK, McClary, M,Jr 1994On the antennular secretion of the cyprid of Balanus amphitrite amphitrite and its role as a settlement pheromoneJ Mar Biol Assoc UK74243250Google Scholar
  10. Dobretsov, S, Qian, PY 2002Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofoulingBiofouling18217228CrossRefGoogle Scholar
  11. Dobretsov, S, Qian, PY 2004The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. for the inhibition of larval settlementJ Exp Mar Biol Ecol2993550CrossRefGoogle Scholar
  12. Dobretsov, S, Qian, PY 2006Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilmsJ Exp Mar Biol Ecol333263274CrossRefGoogle Scholar
  13. Dobretsov, S, Dahms, HU, Qian, PY 2006A review: inhibition of biofouling by marine microorganisms and their metabolitesBiofouling224354CrossRefGoogle Scholar
  14. Egan, S, James, S, Holmström, C, Kjelleberg, S 2001Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata FEMS Microbiol Ecol356773CrossRefGoogle Scholar
  15. Egan, S, James, S, Kjelleberg, S 2002Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata Appl Environ Microbiol68372378CrossRefGoogle Scholar
  16. Fusetani, N 2004Biofouling and antifoulingNat Prod Rep2194104CrossRefGoogle Scholar
  17. Ghorbel, B, Sellami-Kamoun, A, Nasri, M 2003Stability studies of protease from Bacillus cereus BG1Enzyme Microb Technol32513518CrossRefGoogle Scholar
  18. Holmström, C, Kjelleberg, S 1999Marine Pseudoalteromonas species are associated with higher organisms and produce active extracellular compoundsFEMS Microbiol Ecol30285293Google Scholar
  19. Holmström, C, Rittschof, D, Kjelleberg, S 1992Inhibition of settlement by larvae of Balanus amphitrite and Cliona intestinalis by surface-colonizing marine bacteriumAppl Environ Microbiol5821112115Google Scholar
  20. Holmström, C, Egan, S, Franks, A, McCloy, S, Kjelleberg, S 2002Antifouling activities expressed by marine surface associated Pseudoalteromonas speciesFEMS Microbiol Ecol414758Google Scholar
  21. Jensen, RA, Morse, DE 1988The bioadhesive of Phragmatopoma californica tubes: a silk-like cement containing L-DOPAJ Comp Phys B158317324CrossRefGoogle Scholar
  22. Kamino, K 2001Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequenceBiochem J356503507CrossRefGoogle Scholar
  23. Kirchman, D, Graham, D, Reish, D, Mitchell, R 1982Lectins may mediate in the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaetea: Spirorbidae)Mar Biol Lett3201222Google Scholar
  24. Klibanov, AM 2001Improving enzymes by using them in organic solventsNature409241246CrossRefGoogle Scholar
  25. Kon-ya, N, Shimidzu, N, Otaki, N, Yokoyama, A, Adachi, K, Miki, W 1995Inhibitory effect of bacterial ubiquinones on the settling of barnacle, Balanus amphitrite Experientia51153155CrossRefGoogle Scholar
  26. Lau, SCK, Qian, PY 2001Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films: an investigation of the nature of putative larval settlement cueMar Biol138321328CrossRefGoogle Scholar
  27. Lau, SCK, Mak, KKW, Chen, F, Qian, PY 2002Bioactivity of bacterial strains from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans Mar Ecol Prog Ser226301310Google Scholar
  28. Lau, SCK, Thiyagarajan, V, Qian, PY 2003The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlementJ Exp Mar Biol Ecol2824360CrossRefGoogle Scholar
  29. Little, BJ, Wagner, PA 1997Succession in microfoulingNagabhushanam, RThompson, M eds. Fouling Organisms of the Indian Ocean: Biology and Control TechnologyOxford and IBHNew Delhi105134Google Scholar
  30. Maki, JS, Rittschof, D, Costlow, JD, Mitchell, R 1988Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface filmsMar Biol97199206CrossRefGoogle Scholar
  31. Matsumura, K, Nagano, M, Kato-Yoshinaga, Y, Yamazaki, M, Clare, AS, Fusetani, N 1998Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactionsProc R Soc Lond26518251830CrossRefGoogle Scholar
  32. Pettitt, ME, Henry, SL, Callow, ME, Callow, JA, Clare, AS 2004Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta Biofouling20299311CrossRefGoogle Scholar
  33. Railkin, AI 2004Marine Biofouling: Colonization Processes and DefensesCRC PressBoca Raton, FLGoogle Scholar
  34. Rittschof, D, Schmidt, AR, Hooper, IR, Gerhart, DJ, Gunster, D, Bonaventura, J 1991Molecular mediation of settlement of selected invertebrate larvaeThompson, MRSarojini, RNagabhushanam, R eds. Bioactive Compounds from Marine OrganismsA.A. BalkemaRotterdam317328Google Scholar
  35. Rouhi, AM 1998The squeeze of tributyltinsChem Eng News274142Google Scholar
  36. Selvig T, Warren PP, Leavitt RL (1999) Methods for removing undesired growth from a surface. US Patent No 346535, fill. date 02.07.99Google Scholar
  37. Shapiro, SS, Wilk, MB 1965An analysis of variance test for normality (complete samples)Biometrika52591611Google Scholar
  38. Wezel, AP, Wlaardingen, P 2004Environmental risk limits for antifouling substancesAquat Toxicol66427444CrossRefGoogle Scholar
  39. Vreeland, V, Waite, JH, Epstein, L 1998Minireview-polyphenols and oxidases in substratum adhesion by marine algae and musselsJ Phycol3418CrossRefGoogle Scholar
  40. Wahl, M 1989Marine epibiosis.1. Fouling and antifouling: some basic aspectsMar Ecol Prog Ser58175189Google Scholar
  41. Wahl, M 1997Living attached: aufwuchs, fouling, epibiosisNagabhushanam, RThompson, M eds. Fouling Organisms of the Indian Ocean: Biology and Control TechnologyOxford & IBHNew Delhi3184Google Scholar
  42. Waite, JH 1992The DOPA ephemera: a recurrent motif in invertebratesBiol Bull183178184CrossRefGoogle Scholar
  43. Wiegemann, M 2005Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): mechanisms and technical applicationsAquat Sci67166176CrossRefGoogle Scholar
  44. Xiong, H, Nyyssölä, A, Jänis, J, Pastinen, O, Weymarn, N, Leisola, M, Turunen, O 2004Characterization of the xylanase produced on submerged cultivation by Thermomyces lanuginosus DSM 10635Enzyme Microb Technol359399CrossRefGoogle Scholar
  45. Xiong, H, Song, L, Xu, Y, Tosi, M-Y, Dobretsov, S, Qian, P-Y 2007Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteasesJ Ind Microbiol Biotechnol346371CrossRefGoogle Scholar
  46. Yebra, DM, Kiil, S, Dam-Johansen, K 2004Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatingsProg Org Coat5075104CrossRefGoogle Scholar
  47. Zar, JH 1996Biostatistical Analysis3Prentice-HallUpper Saddle River, NJGoogle Scholar
  48. Zentz, F, Hellio, C, Valla, A, Broise, D, Bremer, G, Labia, R 2002Antifouling activities of N-substituted imides: antimicrobial activities and inhibition of Mytilus edulis phenoloxidaseMar Biotechnol4431440CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Sergey Dobretsov
    • 1
    • 2
    Email author
  • Hairong Xiong
    • 1
  • Ying Xu
    • 1
  • Lisa A. Levin
    • 3
  • Pei-Yuan Qian
    • 1
  1. 1.Coastal Marine Laboratory, Department of BiologyHong Kong University of Science and TechnologyKowloonPR China
  2. 2.IFM-GEOMARKiel UniversityKielGermany
  3. 3.Integrative Oceanography DivisionScripps Institution of OceanographyLa JollaUSA

Personalised recommendations