Advertisement

Marine Biotechnology

, Volume 9, Issue 3, pp 293–304 | Cite as

Cold-Adapted Enzymes from Marine Antarctic Microorganisms

  • J-C. Marx
  • T. Collins
  • S. D’Amico
  • G. Feller
  • C. Gerday
Invited Review

Abstract

The Antarctic marine environment is characterized by challenging conditions for the survival of native microorganisms. Indeed, next to the temperature effect represented by the Arrhenius law, the viscosity of the medium, which is also significantly enhanced by low temperatures, contributes to slow down reaction rates. This review analyses the different challenges and focuses on a key element of life at low temperatures: cold-adapted enzymes. The molecular characteristics of these enzymes are discussed as well as the adaptation strategies which can be inferred from the comparison of their properties and three-dimensional structures with those of their mesophilic counterparts. As these enzymes display a high specific activity at low and moderate temperatures associated with a relatively high thermosensitivity, the interest in these properties is discussed with regard to their current and possible applications in biotechnology.

Keywords

Antarctic biotechnology cold adaptation psychrophiles 

References

  1. Allen, D, Huston, A, Wells, J, Deming, J 2002Use of cold-adapted microorganisms in biotechnologyBitton, G. eds. Encyclopedia of Environmental MicrobiologyJohn Wiley & SonsNew York117Google Scholar
  2. Bae, E, Phillips, GN,Jr 2004Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinasesJ Biol Chem2792820228208CrossRefGoogle Scholar
  3. Cavicchioli, R, Siddiqui, KS, Andrews, D, Sowers, KR 2002Low-temperature extremophiles and their applicationsCurr Opin Biotechnol13253261CrossRefGoogle Scholar
  4. Chessa, J-P, Petrescu, I, Bentahir, M, Beeumen, J, Gerday, C 2000Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas speciesBiochim Biophys Acta1479265274Google Scholar
  5. Chintalapati, S, Kiran, MD, Shivaji, S 2004Role of membrane lipid fatty acids in cold adaptationCell Mol Biol (Noisy-le-grand)50631642Google Scholar
  6. Collins, T, Meuwis, MA, Stals, I, Claeyssens, M, Feller, G, Gerday, C 2002A novel family 8 Xylanase: functional and physico-chemical characterizationJ Biol Chem2773513335139CrossRefGoogle Scholar
  7. Collins, T, Meuwis, MA, Gerday, C, Feller, G 2003Activity, stability and flexibility in glycosidases adapted to extreme thermal environmentsJ Mol Biol328419428CrossRefGoogle Scholar
  8. Collins, TH, Dutron, A, Georis, J, Genot, B, Dauvrin, T, Arnaut, P, Gerday, C, Feller, G 2006Use of glycoside hydrolase family 8 xylanases in bakingJ Cereal Sci437984CrossRefGoogle Scholar
  9. Dalluge, JJ, Hamamoto, T, Horikoshi, K, Morita, RY, Stetter, KO, McCloskey, JA 1997Posttranscriptional modification of tRNA in psychrophilic bacteriaJ Bacteriol17919181923Google Scholar
  10. D’Amico, S, Gerday, C, Feller, G 2001Structural determinants of cold-adaptation and stability in a large proteinJ Biol Chem2762579125796CrossRefGoogle Scholar
  11. D’Amico, S, Gerday, C, Feller, G 2002Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha -amylaseJ Biol Chem2774611046115CrossRefGoogle Scholar
  12. D’Amico, S, Marx, J-C, Gerday, C, Feller, G 2003Activity-stability relationships in extremophilic enzymesJ Biol Chem27878917896CrossRefGoogle Scholar
  13. D’Amico, S, Gerday, C, Feller, G 2003Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted α-amylaseJ Mol Biol332981988CrossRefGoogle Scholar
  14. Davail, S, Feller, G, Narinx, E, Gerday, C 1994Cold adaptation of proteins, purification, characterization and sequence of a heat-labile subtilisin from the Antarctic psychrophile Bacillus TA 41J Biol Chem2691744817453Google Scholar
  15. Decho, AW 1990Microbial exopolymer secretions in ocean environments: their roles in food webs and marine processesBarnes, M. eds. Oceanography Marine Biology Annual ReviewAberdeen University PressAberdeen, UK73153Google Scholar
  16. Delille, D 1990Factors affecting the horizontal patchiness of coastal Antarctic seawater bacteriaPolar Biol114145CrossRefGoogle Scholar
  17. Demchenko, AP, Ruskyn, OI, Saburova, EA 1989Kinetics of the lactate dehydrogenase reaction in high-viscosity mediaBiochim Biophys Acta998196203Google Scholar
  18. Duilio, A, Madonna, S, Tutino, ML, Pirozzi, M, Sannia, G, Marino, G 2004Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elementsExtremophiles8125132CrossRefGoogle Scholar
  19. Duilio, A, Tutino, M-L, Marino, G 2004Recombinant protein production in Antarctic Gram-negative bacteriaMeth Mol Biol267225237Google Scholar
  20. Eriksson, S, Hurme, R, Rhen, M 2002Low-temperature sensors in bacteriaPhilos Trans R Soc Lond B Biol Science357887893CrossRefGoogle Scholar
  21. Ermolenko, DN, Makhatadze, GI 2002Bacterial cold-shock proteinsCell Mol Life Sci5919021913CrossRefGoogle Scholar
  22. Feller, G, D’Amico, D, Gerday, C 1999Thermodynamic stability of a cold-active a-amylase from the Antarctic bacterium Alteromonas haloplanctis Biochemistry3846134619CrossRefGoogle Scholar
  23. Fields, PA, Somero, GN 1998Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishesProc Natl Acad Sci USA951147611481CrossRefGoogle Scholar
  24. Fukunaga, N, Sahara, T, Takada, Y 1999Bacterial adaptation to low temperature: implications of cold-inducible genesJ Plant Res112263272CrossRefGoogle Scholar
  25. Garcia-Viloca, M, Gao, J, Karplus, M, Truhlar, DG 2004How enzymes work: analysis by modern rate theory and computer simulationsScience303186195CrossRefGoogle Scholar
  26. Garsoux, G, Lamotte, J, Gerday, C, Feller, G 2004Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis Biochem J384247253CrossRefGoogle Scholar
  27. Georlette, D, Damien, B, Blaise, V, Depiereux, E, Unersky, VN, Gerday, C, Feller, G 2003Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic DNA ligasesJ Biol Chem2783701537023CrossRefGoogle Scholar
  28. Georlette, D, Blaise, V, Dohmen, C, Bouillenne, F, Damien, B, Depiereux, E, Gerday, C, Uversky, VN, Feller, G 2003Cofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus J Biol Chem2784994549953CrossRefGoogle Scholar
  29. Gerday, C, Aittaleb, M, Bentahir, M, Chessa, JP, Claverie, P, Collins, T, D’Amico, S, Dumont, J, Garsoux, G, Georlette, D, Hoyoux, A, Lonhienne, T, Meuwis, M-A, Feller, G 2000Cold-adapted enzymes: from fundamentals to biotechnologyTrends Biotechnol18103107CrossRefGoogle Scholar
  30. Gerike, U, Danson, MJ, Hough, DW 2001Cold-active citrate synthase: mutagenesis of active- site residuesProt Engng14655661CrossRefGoogle Scholar
  31. Grossman, S 1994Bacterial activity in sea ice and open water of the Weddell sea, Antarctica: a microautographic studyMicrob Ecol28118CrossRefGoogle Scholar
  32. Gualerzi, CO, Giuliodori, AM, Pon, CL 2003Transcriptional and post-transcriptional control of cold-shock genesJ Mol Biol331527539CrossRefGoogle Scholar
  33. Hata, K, Hono, M, Fujisawa, M, Kitahara, R, Kamatari, Y, Akasaka, K, Ying, X 2004High pressure NMR study of dihydrofolate reductase from a deep-sea bacterium Moritella profundaCell Mol Biol50311316Google Scholar
  34. Hebraud, M, Potier, P 1999Cold shock response and low temperature adaptation in psychrotrophic bacteriaJ Mol Microbiol Biotechnol1210219Google Scholar
  35. Herndl, GJ, Reinthaler, T, Teira, E, Aken, H, Veth, C, Pernthaler, A, Pernthaler, J 2005Contribution of Archaea to total prokaryotic production in the deep Atlantic OceanAppl Environ Microbiol7123032309CrossRefGoogle Scholar
  36. Imbert, M, Gancel, F 2004Effect of different temperature downshifts on protein synthesis by Aeromonas hydrophila Curr Microbiol497983CrossRefGoogle Scholar
  37. Inouye, M, Phadtare, S 2004Cold shock response and adaptation at near-freezing temperature in microorganismsSci STKE2372631Google Scholar
  38. Kobori, H, Sullivan, CW, Shizuya, H 1984Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end labelling of nucleic acidsProc Natl Acad Sci USA8166916695CrossRefGoogle Scholar
  39. Kulakova, L, Galkin, A, Nakayama, T, Nishino, T, Esaki, N 2004Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stabilityBiochim Biophys Acta16965965Google Scholar
  40. Kumar, S, Tsai, C-J, Nussinov, R 2002Maximal stabilities of reversible two-state proteinsBiochemistry4153595374CrossRefGoogle Scholar
  41. Liang, Z, Tsigos, I, Lee, T, Bouriotis, V, Resing, K, Ahn, N, Klinman, J 2004Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologueBiochemistry431467614683CrossRefGoogle Scholar
  42. Lonhienne, T, Baise, E, Feller, G, Bouriotis, V, Gerday, C 2001Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinasesBiochim Biophys Acta1545349356Google Scholar
  43. Lonhienne, T, Zoidakis, J, Vorgias, CE, Feller, G, Gerday, C, Bouriotis, V 2001Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacteriumJ Mol Biol310291297CrossRefGoogle Scholar
  44. Mancuso Nichols, CA, Garon, S, Bowman, JP, Raguenes, G, Guezennec, J 2004Production of exopolysaccharides by Antarctic marine bacterial isolatesJ Appl Microbiol9610571066CrossRefGoogle Scholar
  45. Margesin, R, Schinner, F 1994 Properties of cold-adapted microorganisms and their potential role in biotechnology J Biotechnol33114CrossRefGoogle Scholar
  46. Margesin, R, Schinner, F 1999Biotechnological Applications of Cold-Adapted OrganismsSpringerBerlin Heidelberg New YorkGoogle Scholar
  47. Mastro, AM, Keith, AD 1984Diffusion in the aqueous compartmentJ Cell Biol99180187CrossRefGoogle Scholar
  48. Mavromatis, K, Tsigos, I, Tzanodaskalaki, M, Kokkinidis, M, Bouriotis, V 2002Exploring the role of a glycine cluster in cold adaptation of an alkaline phosphataseEur J Biochem26923302335CrossRefGoogle Scholar
  49. Mavromatis, K, Feller, G, Kokkinidis, M, Bouriotis, V 2003Cold adaptation of a psychrophilic chitinase: a mutagenesis studyProt Engng16497503CrossRefGoogle Scholar
  50. Medigue, C, Krin, E, Pascal, G, Barbe, V, Bernsel, A, Bertin, PN, Cheung, F, Cruveiller, S, D’Amico, S, Duilio, A, Fang, G, Feller, G, Ho, C, Mangenot, S, Marino, G, Nilsson, J, Parrilli, E, Rocha, EP, Rouy, Z, Sekowska, A, Tutino, ML, Vallenet, D, Heijne, G, Danchin, A 2005Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125Genome Res1513251335CrossRefGoogle Scholar
  51. Methe, BA, Nelson, KE, Deming, JW, Momen, B, Melamud, E, Zhang, X, Moult, J, Madupu, R, Nelson, WC, Dodson, RJ, Brinkac, LM, Daugherty, SC, Durkin, AS, DeBoy, RT, Kolonay, JF, Sullivan, SA, Zhou, L, Davidsen, TM, Wu, M, Huston, AL, Lewis, M, Weaver, B, Weidman, JF, Khouri, H, Utterback, TR, Feldblyum, TV, Fraser, CM 2005The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analysesProc Natl Acad Sci USA1021091310918CrossRefGoogle Scholar
  52. Nichols, CA, Guezennec, J, Bowman, JP 2005Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a reviewMar Biotechnol (NY)7253271CrossRefGoogle Scholar
  53. Petrescu, I, Lamotte-Brasseur, J, Chessa, J-P, Ntarima, P, Claeyssens, M, Devreese, B, Marino, G, Gerday, C 2000Xylanase from the psychrophilic yeast Cryptococcus adeliae Extremophiles4137144CrossRefGoogle Scholar
  54. Phadtare, S 2004Recent developments in bacterial cold-shock responseCurr Issues Mol Biol6125136Google Scholar
  55. Phadtare, S, Alsina, J, Inouye, M 1999Cold-shock response and cold-shock proteinsCurr Opin Microbiol2175180CrossRefGoogle Scholar
  56. Privalov, PL 1990Cold denaturation of proteinsCrit Rev Biochem Mol Biol25281305Google Scholar
  57. Pucciarelli, S, Miceli, C 2002Characterization of the cold-adapted alpha tubulin from the psychrophilic ciliate Euplotes focardii Extremophiles6383389CrossRefGoogle Scholar
  58. Rabus, R, Kube, M, Heider, J, Beck, A, Heitmann, K, Widdel, F, Reinhardt, R 2005The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1Arch Microbiol1832736CrossRefGoogle Scholar
  59. Ray, MK, Kumar, GS, Shivaji, S 1994Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae Microbiology14032173223CrossRefGoogle Scholar
  60. Russell, NJ 1997Psychrophilic bacteria-molecular adaptations of membrane lipidsComp Biochem Physiol A Physiol118489493CrossRefGoogle Scholar
  61. Sahara, T, Suzuki, M, Tsuruha, J, Takada, Y, Fukunaga, N 1999cis-Acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1J Bacteriol18126022611Google Scholar
  62. Seo, JB, Kim, HS, Jung, GY, Nam, MH, Chung, JH, Kim, JY, Yoo, JS, Kim, CW, Kwon, O 2004Psychrophilicity of Bacillus psychrosaccharolyticus: a proteomic studyProteomics436543659CrossRefGoogle Scholar
  63. Siddiqui, KS, Cavicchioli, R 200Cold-adapted enzymesAnnu Rev Biochem75403433CrossRefGoogle Scholar
  64. Somkuti, GA 1981Thermal stability of ribosomes and nucleic acids from thermophilic and psychrophilic fungiDev Indus Microbiol Series22627640Google Scholar
  65. Sun-Yong, K, Kwang-Yeon, H, Sun-Hou, K, Ha-Chin, S, Ye-Sun, H, Yunge, C 1999Structural basis of cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum J Biol Chem2741176111767CrossRefGoogle Scholar
  66. Tehei, M, Franzetti, B, Madern, T, Ginzburg, M, Ginzburg, BZ, Giudici-Orticoni, M-T, Bruschi, M, Zaccai, G 2004Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scatteringEMBO Rep56670CrossRefGoogle Scholar
  67. Thomas, T, Cavicchioli, R 2002Cold adaptation of archaeal elongation factor (EF-2) proteinsCurr Prot Pept Sci3223230CrossRefGoogle Scholar
  68. Timasheff, SN 1992Water as ligand: preferential binding and exclusion of denaturants in protein unfoldingBiochemistry3198579864CrossRefGoogle Scholar
  69. Truong, LV, Tuyen, H, Helmke, E, Binh, LT, Schweder, T 2001Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymesExtremophiles53544CrossRefGoogle Scholar
  70. Willem, S, Srahna, M, Devos, N, Gerday, C, Loppes, R, Matagne, RF 1999Protein adaptation to low temperatures: a comparative study of alpha-tubulin sequences in mesophilic and psychrophilic algaeExtremophiles3221226CrossRefGoogle Scholar
  71. Wouters, JA, Frenkiel, H, Vos, WM, Kuipers, OP, Abee, T 2001Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteinsAppl Environ Microbiol6751715178CrossRefGoogle Scholar
  72. Yoshimune, K, Galkin, A, Kulakova, L, Yoshimura, T, Esaki, N 2005Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperaturesExtremophiles9145150CrossRefGoogle Scholar
  73. Zavodszky, P, Kardos, J, Svingor, A, Petsko, GA 1998Adjustment of conformational flexibility is a key event in the thermal adaptation of proteinsProc Natl Acad Sci USA9574067411CrossRefGoogle Scholar
  74. Zecchinon, L, Oriol, A, Netzel, U, Svennberg, J, Gerardin-Otthiers, N, Feller, G 2005Stability domains, substrate-induced conformational changes, and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric studyJ Biol Chem2804130741314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • J-C. Marx
    • 1
  • T. Collins
    • 1
  • S. D’Amico
    • 1
  • G. Feller
    • 1
  • C. Gerday
    • 1
  1. 1.Laboratory of Biochemistry, Institute of Chemistry, B6, Sart-TilmanUniversity of LiègeLiègeBelgium

Personalised recommendations