Advertisement

Marine Biotechnology

, Volume 9, Issue 2, pp 273–280 | Cite as

Isolation of Female-Specific AFLP Markers and Molecular Identification of Genetic Sex in Half-Smooth Tongue Sole (Cynoglossus semilaevis)

  • Song-Lin ChenEmail author
  • Jing Li
  • Si-Ping Deng
  • Yong-Sheng Tian
  • Qing-Yin Wang
  • Zhi-Meng Zhuang
  • Zhen-Xia Sha
  • Jian-Yong Xu
Original Article

Abstract

The sex-specific molecular marker is a useful gene resource for studying sex- determining mechanisms and controlling fish sex. Artificially produced male and female half-smooth tongue sole (Cynoglossus semilaevis) were used to screen sex-specific amplified fragment length polymorphism (AFLPs) molecular markers. The phenotypic sex of 28 tongue soles was determined by histological sectioning of gonads. The AFLP analysis of 15 females and 13 males via 64 primer combinations produced a total of 4681 scorable bands, of which 42.11% and 43.39% of bands were polymorphic in females and males, respectively. Seven female-specific AFLP markers were identified and designated as CseF382, CseF575, CseF783, CseF464, CseF136, CseF618, and CseF305, respectively. One female-specific AFLP marker (CseF382) was amplified, recovered from the gels, cloned, and sequenced (accession no. DQ487760). This female-specific AFLP marker was converted into a single-locus polymerase-chain reaction (PCR) marker of a sequence-characterized amplified region (SCAR). A simple PCR method of using the specific primers was developed for identifying genetic sex of half-smooth tongue sole. PCR products demonstrated that the initial 15 females produced the female-specific band of about 350 bp, but the initial 13 male individuals failed to produce the band. We also investigated the applicability of the PCR primers in other tongue sole individuals. The same female-specific fragment of about 350 bp was found in the additional 59 female individuals, but not in the additional 58 male individuals. This AFLP-based molecular sexing technique may have great application potential in elucidation of sex determination mechanisms and sex control in half-smooth tongue sole.

Keywords

AFLP Cynoglossus semilaevis female-specific marker half-smooth tongue sole SCAR sex identification 

Notes

Acknowledgment

We thank Mr. Shoutang Liu from Haiyang 863 High-Tech Experimental Base and Mr. Jieming Zhai from Mingbo Aquaculture Ltd, Laizhou of Shandong in China for providing experimental fish. This study was supported by grants from the 948 Agriculture Importation Project of China, Shandong Genetic Improvement Key Project for Agricultural Organism, and State 863 High-Technology R&D Project of China (2005AA603110).

References

  1. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1990Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucl Acids Res2533893402CrossRefGoogle Scholar
  2. Chen, SL, Xu, MY, Ji, XS, Yu, GC 2004Cloning and characterisation of natural resistance associated macrophage protein (Nramp) cDNA from red sea bream (Pagrus major)Fish Shellfish Immunol17305313CrossRefGoogle Scholar
  3. Devlin, RH, Nagahama, Y 2002Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influencesAquaculture208191364CrossRefGoogle Scholar
  4. Devlin, RH, McNeil, BK, Solar, II, Donaldson, EM 1994A rapid PCR-based test for Y-chromosomal DNA allows simple production of all-female strains of chinook salmonAquaculture128211220CrossRefGoogle Scholar
  5. Devlin, RH, Biagi, CA, Smailus, DE 2001Genetic mapping of Y-chromosomal DNA markers in Pacific salmonGenetica1114358CrossRefGoogle Scholar
  6. Ezaz, MT, Harvey, SC, Boonphakdee, C, Teale, AJ, Mcandrew, BJ, Penman, DJ 2004Isolation and physical mapping of sex-linked AFLP markers in Nile Tilapia (Oreochromis niloticus L.)Mar Biotechnol6435445CrossRefGoogle Scholar
  7. Felip, A, Young, WP, Wheeler, PA, Thorgaard, GH 2005An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss)Aquaculture2473543CrossRefGoogle Scholar
  8. Goto, R, Tatsunari, M, Kawamata, K, Matsubara, T, Mizuno, S, Adachi, S, Yamauchi, K 1999Effects of temperature on gonadal sex determination in barfin flounder (Verasper moseri)Fish Sci65884887Google Scholar
  9. Griffiths, R, Orr, KJ, Adam, A, Barber, I 2000DNA sex identification in the three-spined sticklebackJ Fish Biol5713311334CrossRefGoogle Scholar
  10. Hartley, S 1987The chromosomes of salmonid fishesBiol Rev62197214CrossRefGoogle Scholar
  11. Hunter, GA, Donaldson, EM, Stoss, J, Baker, I 1983Production of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal egg and with sperm from sex reversed femalesAquaculture3314CrossRefGoogle Scholar
  12. Johnstone, R, Youngson, AF 1984The progeny of sex-inversed female Atlantic salmon (Salmo salar L.)Aquaculture37179182CrossRefGoogle Scholar
  13. Kondo, M, Nanda, I, Hornung, U, Asakawa, S, Shimizu, N, Mitani, H, Schmid, M, Shima, A, Schartl, M 2003Absence of the candidate male sex-determining gene dmrt1b(Y) of medaka from other fish speciesCurr Biol13416420CrossRefGoogle Scholar
  14. Kovacs, B, Egedi, S, Bartfai, R, Orban, L 2001Male-specific DNA markers from African catfish (Clarias gariepinus)Genetica110267276CrossRefGoogle Scholar
  15. Lee, BY, Penman, DJ, Kocher, TD 2003Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysisAni Genet34379383CrossRefGoogle Scholar
  16. Li, L, Guo, X 2004AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas ThunbergMar Biotechnol62636CrossRefGoogle Scholar
  17. Liu, YG, Chen, SL, Li, BF, Wang, ZJ, Liu, Z 2005Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markersBioche Syste Ecol339931005CrossRefGoogle Scholar
  18. Liu, ZJ, Cordes, JF 2004DNA marker technologies and their applications in aquaculture geneticsAquaculture238137CrossRefGoogle Scholar
  19. Mair, GC, Abucay, JS, Skibinski, DOF, Abella, TA, Beardmore, JA 1997Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus Can J Fish Aquat Sci54396404CrossRefGoogle Scholar
  20. Matsuda, M, Kusama, T, Oshiro, T, Kurihara, Y, Hamaguchi, S, Sakaizumi, M 1997Isolation of a sex chromosome-specific DNA sequence in the medaka, Oryzias latipes Genes Genet Syst72263268CrossRefGoogle Scholar
  21. Matsuda, M, Nagahama, Y, Shinomiya, A, Sato, T, Matsuda, C, Kobayashi, T, Morrey, C, Shibata, N, Asakawa, S, Shimizu, N, Hori, H, Hamaguchi, S, Sakaizumi, M 2002DMY is a Y-specific DM-domain gene required for male development in the medaka fishNature417559563CrossRefGoogle Scholar
  22. Mickett, K, Morton, C, Feng, J, Li, P, Simmons, M, Cao, D, Dunham, RA, Liu, Z 2003Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markersAquaculture22891105CrossRefGoogle Scholar
  23. Patino, R, Davis, KB, Schoore, JE, Uguz, C, Strussmann, CA, Parker, NC, Simco, BA, Goudie, CA 1996Sex differentiation of channel catfish gonads: normal developmental and effects of temperatureJ Exp Zool276209218CrossRefGoogle Scholar
  24. Volff, JN, Kondo, M, Schartl, M 2003Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fishTrends Genet19196199CrossRefGoogle Scholar
  25. Vos, P, Hogers, R, Bleeker, M, Reijans, M, lee, T, Hornes, M, Frijters, A, Pot, J, Peleman, J, Kuiper, M, Zabeau, M 1995AFLP: a new technique for DNA fingerprintingNucl Acid Res2344074414CrossRefGoogle Scholar
  26. Watanabe, T, Fujita, H, Yamasaki, K, Seki, S, Taniguchi, N 2004Preliminary study on linkage mapping based on microsatellite DNA and AFLP markers using homozygous clonal fish in ayu (Plecoglossus altivelis)Mar Biotechnol6327334CrossRefGoogle Scholar
  27. Xu, M, Huaracha, E, Korban, S 2001Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in appleGenome446370CrossRefGoogle Scholar
  28. Yamamoto, E 1999Studies on sex-manipulation and production of cloned population in hirame flounder, Paralichthys olivaceus Aquaculture173235246CrossRefGoogle Scholar
  29. Young, WP, Wheeler, PA, Coryell, VH, Keim, P, Thorgaard, GH 1998A detailed linkage map of rainbow trout produced using doubled haploidsGenetics148839850Google Scholar
  30. Yu, Z, Guo, X 2004Genetic analysis of selected strains of eastern oyster (Crassostrea virginica Gmelin) using AFLP and microsatellite markersMar Biotechnol6575586CrossRefGoogle Scholar
  31. Zhuang, ZM, Wu, D, Zhang, SC, Pang, QX, Wang, CL, Wan, RJ 2006G-banding patterns of the chromosomes of tonguefish Cynoglossus semilaevis Gunther, 1873J Appl Ichthyol22437440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Song-Lin Chen
    • 1
    Email author
  • Jing Li
    • 1
  • Si-Ping Deng
    • 1
  • Yong-Sheng Tian
    • 1
  • Qing-Yin Wang
    • 1
  • Zhi-Meng Zhuang
    • 1
  • Zhen-Xia Sha
    • 1
  • Jian-Yong Xu
    • 1
  1. 1.Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina

Personalised recommendations