Marine Biotechnology

, Volume 9, Issue 2, pp 117–127 | Cite as

Fish ES Cells and Applications to Biotechnology

  • M. Carmen Alvarez
  • Julia Béjar
  • Songlin Chen
  • Yunhan Hong
Invited Review


ES cells provide a promising tool for the generation of transgenic animals with site-directed mutations. When ES cells colonize germ cells in chimeras, transgenic animals with modified phenotypes are generated and used either for functional genomics studies or for improving productivity in commercial settings. Although the ES cell approach has been limited to mice, there is strong interest for developing the technology in fish. We describe the step-by-step procedure for developing ES cells in fish. Key aspects include avoiding cell differentiation, specific in vitro traits of pluripotency, and, most importantly, testing for production of chimeric animals as the main evidence of pluripotency. The entire process focuses on two model species, zebrafish and medaka, in which most work has been done. The achievements attained in these species, as well as their applicability to other commercial fish, are discussed. Because of the difficulties relating to germ line competence, mostly of long-term fish ES cells, alternative cell-based approaches such as primordial germ cells and nuclear transfer need to be considered. Although progress to date has been slow, there are promising achievements in homologous recombination and alternative avenues yet to be explored that can bring ES technology in fish to fruition.


Chimeras ES cells fish transgenics 



The authors thank Perry Hackett for critical reading of the manuscript. This work was supported by grants from the Chinese Academy of Sciences (KSCX2-SW-303), the Chinese Ministry of Sciences and Technology (High Tech-973 Program 2004CB117406), the Biomedical Research Council of Singapore (R-154-000-204-305), and the National University of Singapore (R-154-000-153-720) to Y.H.


  1. Ando, S, Wakamatsu, Y 1995Production of chimeric medaka (Oryzias latipes)Fish Biol J Medak76568Google Scholar
  2. Armstrong, L, Lako, M, Lincoln, J, Cairns, PM, Hole, N 2000mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cellsMech Dev97109116CrossRefGoogle Scholar
  3. Béjar, J, Hong, Y, Alvarez, MC 1999Towards obtaining ES cells in the marine fish species Sparus aurata; multipassage maintenance, characterization and transfectionGenetic Anal Biomol Eng15125129CrossRefGoogle Scholar
  4. Béjar, J, Hong, Y, Alvarez, MC 2002An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera productionTransgenic Res11279289CrossRefGoogle Scholar
  5. Béjar, J, Hong, Y, Schartl, M 2003Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytesDevelopment13065456553CrossRefGoogle Scholar
  6. Béjar, J, Porta, J, Borrego, JJ, Alvarez, MC 2005The piscine SAF-1 cell line: genetic stability and labelingMar Biotechnol7389395CrossRefGoogle Scholar
  7. Boyer, LA, Lee, TI, Cole, MF, Johnstone, SE, Levine, SS, Zucker, JP, Guenther, MG, Kumar, RM, Murray, HL, Jenner, RG, Gifford, DK, Melton, DA, Jaenisch, R, Young, RA 2005Core transcriptional regulatory circuitry in human embryonic stem cellsCell122947956CrossRefGoogle Scholar
  8. Bradford, CS, Sun, L, Barnes, WD 1994Basic fibroblast growth factor stimulates proliferation and suppresses melanogenesis in cell cultures derived from early zebrafish embryosMol Mar Biol Biotechnol37886Google Scholar
  9. Burgess, S, Reim, G, Chen, W, Hopkins, N, Brand, M 2002The zebrafish spiel-ohne- grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesisDevelopment129905916Google Scholar
  10. Capecchi, MR 1989Altering the genome by homologous recombinationScience24412881292CrossRefGoogle Scholar
  11. Cecconi, F, Meyer, BI 2000Gene trap: a way to identify novel gene and unravel their biological functionFEBS Lett4806371CrossRefGoogle Scholar
  12. Chen, S, Hong, Y, Schartl, M 2002Development of a positive-negative selection procedure for gene targeting in fish cellsAquaculture2146779CrossRefGoogle Scholar
  13. Chen, SL, Ye, H, Sha, Q, Xhi, CY 2003aDerivation of a pluripotent embryonic cell line from red seabream blastulasJ Fish Biol63795805CrossRefGoogle Scholar
  14. Chen, S, Sha, Z, Ye, H 2003bEstablishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryosAquaculture218141151CrossRefGoogle Scholar
  15. Chen, SL, Ren, GC, Sha, ZX, Shi, CY 2004Establishment of a continuous embryonic cell line from flounder (Paralichthys olivaceus) for virus isolationDis Aquat Org60241246Google Scholar
  16. Chen, SL, Ren, GC, Sha, ZX, Hong, Y 2005Development and characterization of a continuous embryonic cell line from turbot (Scophthalmus maximus)Aquaculture2496368CrossRefGoogle Scholar
  17. Collodi, P, Kamei, Y, Sharps, A, Weber, D, Barnes, D 1992Fish embryo cell cultures for derivation of stem cells and transgenic chimerasMol Mar Biol Biotechnol1257265Google Scholar
  18. Doetschman, T, Williams, P, Maeda, N 1988Establishment of hamster blastocyst-derived embryonic stem (ES) cellsDev Biol127224227CrossRefGoogle Scholar
  19. Donovan, PJ, Gearhart, J 2001The end of the beginning for pluripotent stem cellsNature4149297CrossRefGoogle Scholar
  20. Eckfeldt, CE, Mendenhall, EM, Verfaillie, CM 2005The molecular repertoire of the “almighty” stem cellNat Rev Mol Cell Biol6726737CrossRefGoogle Scholar
  21. Evans, MJ, Kaufman, MH 1981Establishment in culture of pluripotential cells from mouse embryosNature292154156CrossRefGoogle Scholar
  22. Fan, L, Collodi, P 2002Progress towards cell-mediated gene transfer in zebrafishBrief Funct Genom Proteom1131138CrossRefGoogle Scholar
  23. Fan, L, Crodian, J, Collodi, P 2004Production of zebrafish germline chimeras by using cultured embryonic stem (ES) cellsMet Cell Biol77113119CrossRefGoogle Scholar
  24. Fan, L, Moon, J, Crodian, J, Collodi, P 2006Homologous recombination in zebrafish ES cellsTransgenic Res152130CrossRefGoogle Scholar
  25. First, NL, Sims, MM, Park, SP, Kent-Fisrt, MJ 1994Systems for production of calves from cultured bovine embryonic cellsReprod Fertil Dev6553562CrossRefGoogle Scholar
  26. Fishman, MC 2001Zebrafish the canonical vertebrateScience29412901291CrossRefGoogle Scholar
  27. Hackett, PB, Alvarez, MC 2000The molecular genetics of transgenic fishFingerman, MNagabhushanam, R eds. Recent Advances in Marine Biotechnology, Vol. 4: Aquaculture, FishesScience PublishersEnfield, NH77145Google Scholar
  28. Hasty, P, Ramírez-Solís, R, Krumlauf, R, Bradley, A 1991Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cellsNature350243246CrossRefGoogle Scholar
  29. Holt, SE, Wright, WE, Shay, JW 1996Regulation of telomerase activity in immortal cell linesMol Cell Biol1629322939Google Scholar
  30. Hong, Y, Schartl, M 1996Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer-free culturesMol Mar Biol Biotechnol593104Google Scholar
  31. Hong, Y, Winkler, C, Schartl, M 1996Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes)Mech Dev603344CrossRefGoogle Scholar
  32. Hong, Y, Winkler, C, Schartl, M 1998Production of medakafish chimeras from a stable embryonic stem cell lineProc Natl Acad Sci USA9536793684CrossRefGoogle Scholar
  33. Hong, Y, Winkler, C, Schartl, M 1998Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage numberDev Genes Evol208595602CrossRefGoogle Scholar
  34. Hong, Y, Chen, S, Schartl, M 2000Embryonic stem cells in fish: current status and perspectivesFish Physiol Biochem22165170CrossRefGoogle Scholar
  35. Hong, Y, Winkler, C, Liu, T, Chai, G, Schartl, M 2004aActivation of the mouse Oct4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiationMech Dev121933943CrossRefGoogle Scholar
  36. Hong, Y, Liu, T, Zhao, H, Xu, H, Wang, W, Liu, R, Chen, T, Deng, J, Gui, J 2004bEstablishment of a normal medakafish spermatogonial cell line capable of sperm production in vitroProc Natl Acad Sci USA10180118016CrossRefGoogle Scholar
  37. Hong, Y, Chen, S, Gui, J, Schartl, M 2004Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fishTransgenic Res134150CrossRefGoogle Scholar
  38. Iannaccone, PM, Taborn, GU, Garton, RL, Caplice, MD, Brenin, DR 1994Pluripotent embryonic stems cells from the rat are capable of producing chimeraDev Biol163288292CrossRefGoogle Scholar
  39. Kawase, E, Suemori, H, Takahashi, N, Okazaki, K, Nakatsuji, N 1994Strain difference in establishment of mouse embryonic stem (ES) cell linesInt J Dev Biol38385390Google Scholar
  40. Lee, K-Y, Huang, H, Ju, B, Yang, Z, Lin, S 2002Cloned zebrafish by nuclear transfer from long-term-cultured cellsNat Biotechnol20795799Google Scholar
  41. Lerdermann, B, Burki, K 1991Establishment of a germ-line competent C57BL/6 embryonic stem cell lineExp Cell Res197254258CrossRefGoogle Scholar
  42. Lin, S, Long, W, Chen, J, Hopkins, N 1992Production of germ-line chimearas in zebrafish by cell transplants from genetically pigmented to albino embryosProc Natl Acad Sci USA8945194523CrossRefGoogle Scholar
  43. Ma, C, Fan, L, Ganassin, R, Bols, N, Collodi, P 2001Production of zebrafish germ-line chimeras from embryo cell culturesProc Natl Acad Sci USA9824612466CrossRefGoogle Scholar
  44. Mansour, SL, Thomas, KR, Capecchi, MR 1988Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genesNature336348352CrossRefGoogle Scholar
  45. Mantell, LL, Greider, GW 1994Telomerase activity in germ line and embryonic cells of Xenopus EMBO J1332113217Google Scholar
  46. Martin, GR 1981Isolation of a pluripotent cell line from mouse embryo cultures in medium conditioned by teratocarcinoma stem cellsProc Natl Acad Sci USA7876347638CrossRefGoogle Scholar
  47. Melamed, P, Gong, Z, Fletcher, G, Hew, CL 2002The potential impact of modern biotechnology on fish aquacultureAquaculture204255269CrossRefGoogle Scholar
  48. Mintz, B, Illmensee, K 1975Normal genetically mosaic mice produced from malignant teratocarcinoma cellsProc Natl Acad Sci USA72935853589CrossRefGoogle Scholar
  49. Müller, U 1999Ten years of gene targeting: targeted mouse mutants from vector design to phenotype analysisMech Dev821321CrossRefGoogle Scholar
  50. Olsen, LC, Aasland, R, Fjose, A 1997A vasa-like gene in zebrafish identifies putative primordial germ cellsMech Dev6695105CrossRefGoogle Scholar
  51. Pain, B, Clark, ME, Shen, M, Nakazama, H, Sakurai, M, Samarut, J, Etches, RJ 1996Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialitiesDevelopment12223392348Google Scholar
  52. Piedrahita, JA, Anderson, GB, Bond Durant, RH 1990On the isolation of embryonic stem cells: comparative behaviour of murine, porcine and ovine embryosTheriogenology34879901CrossRefGoogle Scholar
  53. Reubinoff, BE, Pera, MF, Fong, CY, Trounson, A, Bongso, A 2000Embryonic stem cell lines from human blastocysts: somatic differentiation in vitroNat Biotechnol18399404CrossRefGoogle Scholar
  54. Sukoyan, MA, Vatolin, SY, Golubitsa, AN, Zhelezova, AI, Semenova, LA, Serov, OL 1993Embryonic stem cells derived from morulae, inner cell mass and blastocysts of mink: comparisons of their pluripotenciesMol Reprod Dev36148158CrossRefGoogle Scholar
  55. Sun, L, Bradford, CS, Barnes, DW 1995aFeeder cell cultures for zebrafish embryonal cells in vitroMol Mar Biol Biotechnol44350Google Scholar
  56. Sun, L, Bradford, CS, Ghosh, C, Collodi, P, Barnes, DW 1995bES-like cell cultures derived from early zebrafish embryosMol Mar Biol Biotechnol4193199Google Scholar
  57. Tanaka, M, Kinoshita, M, Kobayashi, D, Nagahama, Y 2001Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: a useful model to monitor germ cells in a live vertebrateProc Natl Acad Sci USA9825442549CrossRefGoogle Scholar
  58. Thomas, KR, Capecchi, MR 1987Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cellsCell51501512CrossRefGoogle Scholar
  59. Thomson, JA, Kalishman, JK, Golos, T, Urning, M, Harris, CP, Becker, RA, Hearn, JP 1995Isolation of a primate embryonic stem cell lineProc Natl Acad Sci USA9278447848CrossRefGoogle Scholar
  60. Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, Waknitz, MA, Swiergiel, JJ, Marshall, VS, Jones, JM 1998Embryonic stem cell lines derived from human blastocystsScience28211451147CrossRefGoogle Scholar
  61. Torgersen, J, Nourizadeh-Lillabadi, R, Husebye, H, Alestrom, P 2002In silico and in situ characterization of the zebrafish (Danio rerio) gnrh3 (sGnRH) geneBMC Genom32536CrossRefGoogle Scholar
  62. Wakamatsu, Y, Ozato, K, Hashimoto, H, Kinoshita, M, Sakaguchi, M, Iwamatsu, T, Hyodo-Taguchi, Y, Tomita, H 1993Generation of germ-line chimeras in medaka (Oryzias latipes)Mol Mar Biol Biotechnol2325332Google Scholar
  63. Wakamatsu, Y, Ozato, K, Sasado, T 1994Establishment of a pluripotent cell line derived from a medaka (Oryzias latipes) blastula embryoMol Mar Biol Biotechnol3185191Google Scholar
  64. Wakamatsu, Y, Ju, B, Pristyaznhyuk, I, Niwa, K, Ladygina, T, Kinoshita, M, Araki, K, Ozato, K 2001Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes)Proc Natl Acad Sci USA9810711076CrossRefGoogle Scholar
  65. Wheeler, MB 1994Development and validation of swuine embryonic stem cells: a reviewReprod Fertil Dev6563568CrossRefGoogle Scholar
  66. Wittbrodt, J, Shima, A, Schartl, M 2002Medaka-a model organism from the Far EastNat Rev Genet35364CrossRefGoogle Scholar
  67. Wobus, AM, Holzhausen, H, Jakel, P, Schoneich, J 1984Characterization of a pluripotent stem cell line derived from a mouse embryoExp Cell Res152212219CrossRefGoogle Scholar
  68. Yoon, C, Kawakami, K, Hopkins, N 1997Zebrafish vasa homologue RNA is located to the cleavage planes of 2- and 4-cell-stage embryos and its expression in the primordial germ cellsDevelopment12431573166Google Scholar
  69. Yoshizaki, G, Takeuchi, A, Sakatani, S, Takeuchi, T 2000Germ cell specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoterInt J Dev Biol44323326Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • M. Carmen Alvarez
    • 1
  • Julia Béjar
    • 1
  • Songlin Chen
    • 2
  • Yunhan Hong
    • 3
    • 4
  1. 1.Department of Cell Biology and Genetics, Faculty of SciencesUniversity of MálagaMálagaSpain
  2. 2.Yellow Sea Fisheries Research InstituteChinese Academy of Fisheries SciencesQingdaoChina
  3. 3.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  4. 4.Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations