Marine Biotechnology

, 9:33

Population Genetic Structuring in Acanthopagrus butcheri (Pisces: Sparidae): Does Low Gene Flow Among Estuaries Apply to Both Sexes?

Original Article

Abstract

Acanthopagrus butcheri completes its entire life history within estuaries and coastal lakes of southern Australia, although adults occasionally move between estuaries via the sea. Consequently, it is expected that populations of A. butcheri in different estuaries will be genetically distinct, with the magnitude of genetic divergence increasing with geographic isolation. However, previous genetic studies of A. butcheri from southeast Australia yielded conflicting results; allozyme variation exhibited minimal spatial structuring (θ = 0.012), whereas mitochondrial DNA distinguished the majority of populations analyzed (θ = 0.263) and genetic divergence was positively correlated with geographic isolation. This discrepancy could reflect high male gene flow, which impacts nuclear but not mitochondrial markers. Here we estimated allele frequencies at five nuclear microsatellite loci across 11 southeast Australian populations (595 individuals). Overall structuring of microsatellite variation was weaker (θ = 0.088) than that observed for mitochondrial DNA, but was able to distinguish a greater number of populations and was positively correlated with geographic distance. Therefore, we reject high male gene flow and invoke a stepping-stone model of infrequent gene flow among estuaries for both sexes. Likewise, management of A. butcheri within the study range should be conducted at the scale of individual or geographically proximate estuaries for both sexes. The lack of allozyme structuring in southeast Australia reflects either the large variance in structuring expected among loci under neutral conditions and the low number of allozymes surveyed or a recent colonization of estuaries such that some but not all nuclear loci have approached migration-drift equilibrium.

Keywords

Isolation by distance microsatellite migration-drift equilibrium sea level selection stepping stone 

References

  1. Adcock, GJ, Bernal Ramírez, JH, Hauser, L, Smith, P, Carvalho, GR 2000Screening of DNA polymorphisms in samples of archived scales from New Zealand snapperJ Fish Biol5612831287CrossRefGoogle Scholar
  2. Allen, GR, Midgley, SH, Allen, M 2002Field Guide to the Freshwater Fishes of AustraliaWestern Australian MuseumPerth)Google Scholar
  3. Arnaud-Haond, S, Bonhomme, F, Blanc, F 2003Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margaritiferaJ Evol Biol16388398CrossRefGoogle Scholar
  4. Baer, CF 1999Among-locus variation in FST: fish, allozymes and the Lewontin-Krakauer test revisitedGenetics152653659Google Scholar
  5. Balloux, F, Brünner, H, Lugon-Moulin, N, Hausser, J, Goudet, J 2000Microsatellites can be misleading: an empirical and simulation studyEvolution5414141422CrossRefGoogle Scholar
  6. Beacham, TD, Hay, DE, Le, KD 2005Population structure and stock identification of Eulachon (Thaleichthys pacificus), an anadromous smelt, in the Pacific northwestMar Biotechnol7363372CrossRefGoogle Scholar
  7. Bekkevold, D, Hansen, MM, Mensberg, KD 2004Genetic detection of sex-biased dispersal in historical and contemporary populations of anadromous brown trout Salmo truttaMol Ecol1317071712CrossRefGoogle Scholar
  8. Bentzen, P, Taggart, CT, Ruzzante, DE, Cook, D 1996Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest AtlanticCan J Fish Aquat Sci5327062721CrossRefGoogle Scholar
  9. Bierne, N, Daguin, C, Bonhomme, F, David, P, Borsa, P 2003Direct selection on allozymes is not required to explain heterogeneity among marker loci across a Mytilus hybrid zoneMol Ecol1225052510CrossRefGoogle Scholar
  10. Bilton, DT, Paula, J, Bishop, JDD 2002Dispersal, genetic differentiation and speciation in estuarine organismsEst Coast Shelf Sci55937952CrossRefGoogle Scholar
  11. Birky, CW, Fuerst, P, Maruyama, T 1989Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplastic cells, and comparison to nuclear genesGenetics121613627Google Scholar
  12. Bohonak, AJ 2002IBD (isolation by distance): a program for analyses of isolation by distanceJ Hered93153154CrossRefGoogle Scholar
  13. Brownstein, MJ, Carpten, JD, Smith, JR 1996Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotypingBioTechniques2010041010Google Scholar
  14. Buonaccorsi, VP, McDowell, JR, Graves, JE 2001Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans)Mol Ecol1011791196CrossRefGoogle Scholar
  15. Burridge, CP, Hurt, AC, Farrington, LW, Coutin, PC, Austin, CM 2004Stepping stone gene flow in an estuarine-dwelling sparid from south-east AustraliaJ Fish Biol64805819CrossRefGoogle Scholar
  16. Butcher, AD, Ling, JK 1962Bream tagging experiments in East Gippsland during April and May 1944Vic Nat78256264Google Scholar
  17. Carvalho, GR, Hauser, L 1995

    Molecular genetics and the stock concept in fisheries

    Carvalho, GRPitcher, TJ eds. Molecular Genetics in FisheriesChapman and HallLondon5580
    Google Scholar
  18. Castric, V, Bernatchez, L 2003The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill)Genetics163983996Google Scholar
  19. Chaplin, JA, Baudains, GA, Gill, HS, McCulloch, R, Potter, IC 1998Are assemblages of black bream (Acanthopagrus butcheri) in different estuaries genetically distinct?Int J Salt Lake Res6303321Google Scholar
  20. Chenoweth, SF, Hughes, JM 1997Genetic population structure of the catadromous Perciform: Macquaria novemaculeata (Percichthyidae)J Fish Biol50721733Google Scholar
  21. Chenoweth, SF, Hughes, JM, Keenan, CP, Lavery, S 1998Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi)Heredity80187197CrossRefGoogle Scholar
  22. Coutin, P 2000Black bream-1997Fish Vic Assess Rep Ser18172Google Scholar
  23. Coutin PC, Conron S (2006) “Black bream.” In: Fisheries Co-Management Council Annual Report 2004–05. (Parkville, Victoria: Fisheries Co-Management Council), pp 31–33Google Scholar
  24. Crandall, KA, Fetzner, JW, Lawler, SH, Kinnersley, M, Austin, CM 1999Phylogenetic relationships among the Australian and New Zealand genera of freshwater crayfishesAust J Zool47199214CrossRefGoogle Scholar
  25. Innocentiis, S, Sola, L, Cataudella, S, Bentzen, P 2001Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean SeaMol Ecol1021632175CrossRefGoogle Scholar
  26. Doupé, RG, Sarre, GA, Partridge, GJ, Lymbery, AJ, Jenkins, GI 2005What are the prospects for black bream Acanthopagrus butcheri (Munro) aquaculture in salt-affected inland Australia?Aquac Res3613451355CrossRefGoogle Scholar
  27. Dufresne, F, Bourget, E, Bernatchez, L 2002Differential pattern of spatial divergence in microsatellite and allozyme alleles: further evidence for locus-specific selection in the acorn barnacle, Semibalanus balanoides?Mol Ecol11113123CrossRefGoogle Scholar
  28. Estoup, A, Rousset, F, Michalakis, Y, Cornuet, J-M, Adriamanga, M, Guyomard, R 1998Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta)Mol Ecol7339353CrossRefGoogle Scholar
  29. Farrington, LW, Austin, CM, Coutin, P 2000Allozyme variation and stock structure in the black bream, Acanthopagrus butcheri (Munro) (Sparidae) in southern Australia: implications for fisheries management, aquaculture and taxonomic relationship with Acanthopagrus australis (Günther)Fish Manag Ecol7265279CrossRefGoogle Scholar
  30. Fraser, DJ, Lippé, C, Bernatchez, L 2004Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis)Mol Ecol136780CrossRefGoogle Scholar
  31. Garber, AF, Tringali, MD, Stuck, KC 2004Population structure and variation in red snapper (Lutjanus campechanus) from the Gulf of Mexico and Atlantic coast of Florida as determined from mitochondrial DNA control region sequenceMar Biotechnol6175185CrossRefGoogle Scholar
  32. Gorman TB (1965) Seaward movement of black bream. Aust Fish News 24, 9Google Scholar
  33. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet, J. (1995). FSTAT (v.1.2): a computer program to calculate f-statistics. J Hered 86, 485–486
  34. Goudet, J, Raymond, M, Meeüs, T, Rousset, R 1996Testing differentiation in diploid populationsGenetics14419331940Google Scholar
  35. Grimes, CB, Kingsford, MJ 1996How do riverine plumes influence fish larvae-do they enhance recruitment?Mar Fresh Res47191208CrossRefGoogle Scholar
  36. Guinand, B, Lemaire, C, Bonhomme, F 2004How to detect polymorphisms undergoing selection in marine fishes? A review of methods and case studies, including flatfishesJ Sea Res51167182CrossRefGoogle Scholar
  37. Haddy, JA, Pankhurst, NW 1998Annual change in reproductive condition and plasma concentrations of sex steroids in black bream, Acanthopagrus butcheri (Munroe) (Sparidae)Mar Fresh Res49389397CrossRefGoogle Scholar
  38. Hedrick, PW 1999Perspective: highly variable loci and their interpretation in evolution and conservationEvolution53313318CrossRefGoogle Scholar
  39. Hedrick, PW 2005A standardized genetic differentiation measureEvolution5916331638CrossRefGoogle Scholar
  40. Hoarau, G, Piquet, AM-T, Veer, HW, Rijnsdorp, AD, Stam, WT, Olsen, JL 2004Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA dataJ Sea Res51183190CrossRefGoogle Scholar
  41. Hodgkin, EP 1994

    Estuaries and coastal lagoons

    Hammond, LSSynnot, RN eds. Marine BiologyLongmanSouth Melbourne315332
    Google Scholar
  42. Holt CP (1978) The biology of three teleost species in the Swan River estuary. BSc Honours Thesis. Perth: Murdoch UniversityGoogle Scholar
  43. Hutchings, JA, Gerber, L 2002Sex-biased dispersal in a salmonid fishProc Roy Soc Lond B26924872493CrossRefGoogle Scholar
  44. Hutchinson, DW, Templeton, AR 1999Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variabilityEvolution5318981914CrossRefGoogle Scholar
  45. Jean, C-T, Lee, S-C, Hui, C-F, Chen, C-T 1995Variation in mitochondrial DNA and phylogenetic relationships of fishes of the subfamily Sparinae (Perciformes: Sparidae) in the coastal waters of TaiwanZool Stud34270280Google Scholar
  46. Jerry, DR, Baverstock, PR 1998Consequences of a catadromous life-strategy for levels of mitochondrial DNA differentiation among populations of the Australian bass, Macquaria novemaculeataMol Ecol710031013CrossRefGoogle Scholar
  47. Kailola, PJ, Williams, MJ, Stewart, PC, Reichelt, RE, McNee, A, Geieve, C 1993Australian fisheries resourcesBureau of Resource Science, Department of Primary Industries and Energy, and the Fisheries Research and Development CorporationCanberraGoogle Scholar
  48. Karl, SA, Avise, JC 1992Balancing selection at allozyme loci in oysters: implications from nuclear RFLPsScience256100102CrossRefGoogle Scholar
  49. Kench, PS 1999Geomorphology of Australian estuaries: review and prospectAust J Ecol24367380CrossRefGoogle Scholar
  50. Kimura, M, Weiss, GH 1964The stepping stone model of population structure and the decrease of genetic correlation with distanceGenetics49561576Google Scholar
  51. Knight, ME, Oppen, MJH, Smith, HL, Rico, C, Hewitt, GM, Turner, GF 1999Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellitesMol Ecol815211527CrossRefGoogle Scholar
  52. Lemaire, C, Allegrucci, G, Naciri, M, Bahri-Sfar, L, Kara, H, Bonhomme, F 2000Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)?Mol Ecol9457467CrossRefGoogle Scholar
  53. Lenanton, RCJ 1977Aspects of the ecology of fish and commercial crustaceans of the Blackwood River estuary Western AustraliaFish Res Bull (Western Australian Marine Research Laboratories, Department of Fisheries and Fauna)19172Google Scholar
  54. Lenanton, RCJ, Ayvazian, SG, Dibden, CJ, Jenkins, G, Sarre, GA 1999

    The use of stock enhancement to improve the catch rates of black bream Acanthopagrus butcheri (Munro) for Western Australian Recreational Fishers

    Howell, BRMoksness, ESvåsand, T eds. Stock Enhancement and Sea RanchingFishing News BooksOxford219230
    Google Scholar
  55. Lewontin, RC, Krakauer, J 1973Distribution of gene frequency as a test of the theory of selective neutrality of polymorphismsGenetics74175195Google Scholar
  56. Lyrholm, T, Leimar, O, Johanneson, B, Gyllensten, U 1999Sex-biased dispersal in sperm whales: contrasting mitochondrial and nuclear genetic structure of global populationsProc Roy Soc Lond B266347354CrossRefGoogle Scholar
  57. McDonald, JH, Verrelli, BC, Geyer, LB 1996Lack of geographic variation in anonymous nuclear polymorphisms in the American oyster, Crassostrea virginicaMol Biol Evol1311141118Google Scholar
  58. Nei, M 1987Molecular Evolutionary GeneticsNew YorkColumbia University PressGoogle Scholar
  59. Newton, GM 1996Estuarine ichthyoplankton ecology in relation to hydrology and zooplankton dynamics in a salt wedge estuaryMar Fresh Res4799111CrossRefGoogle Scholar
  60. Norriss, JV, Tregonning, JE, Lenanton, RJC, Sarre, G 2002Biological synopsis of the black bream, Acanthopagrus butcheri (Munroe) (Teleostei: Sparidae) in Western Australia with reference to information from other southern statesFish Res Report (Western Australian Marine Research Laboratories)93148Google Scholar
  61. Partridge, GJ, Sarre, GA, Hall, NG, Jenkins, GI, Chaplin, J, Potter, IC 2004Comparisons between the growth of Acanthopagrus butcheri cultured from broodstock from two estuarine populations that are reproductively isolated and differ markedly in growth rateAquaculture2315158CrossRefGoogle Scholar
  62. Pogson, GH, Mesa, KA, Boutilier, RG 1995Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP lociGenetics139375385Google Scholar
  63. Potter, IC, Hyndes, GA 1999Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: a reviewAust J Ecol24395421CrossRefGoogle Scholar
  64. Rassmann, K, Tautz, D, Trillmich, F, Gliddon, C 1997The microevolution of the Galapagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analysesMol Ecol6437452CrossRefGoogle Scholar
  65. Raymond, M, Rousset, F 1995GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicismJ Hered86248249Google Scholar
  66. Rice, WR 1989Analysing tables of statistical testsEvolution43223225CrossRefGoogle Scholar
  67. Rowland, SJ, Snape, R 1994Labile protogynous hermaphroditism in the black bream, Acanthopagrus butcheri (Munro) (Sparidae)Proc Linn Soc NSW114225232Google Scholar
  68. Ryman, N, Jorde, PE 2001Statistical power when testing for genetic differentiationMol Ecol1023612373CrossRefGoogle Scholar
  69. Sarre, GA, Potter, IC 2000Variation in age compositions and growth rates of Acanthopagrus butcheri (Sparidae) among estuaries: some possible contributing factorsFish Bull98785799Google Scholar
  70. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.001: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland http://lgb.unige.ch/arlequin/)
  71. Schubel, JR, Hirschberg, DJ 1978

    Estuarine graveyards, climatic change, and the importance of the estuarine environment

    Wiley, ML eds. Estuarine InteractionsAcademic PressNew York285303
    Google Scholar
  72. Schuelke, M 2000An economic method for the fluorescent labelling of PCR fragmentsNat Biotech18233234CrossRefGoogle Scholar
  73. Shaw, PW, Pierce, GJ, Boyle, PR 1999Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markersMol Ecol8407417CrossRefGoogle Scholar
  74. Shaw, PW, Turan, C, Wright, JM, O'Connell, M, Carvalho, GR 1999Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analysesHeredity83490499CrossRefGoogle Scholar
  75. Sherwood, JE, Backhouse, GN 1982Hydrodynamics of salt wedge estuaries-implications for successful spawning in black bream (Acanthopagrus butcheri)Warrnambool Inst Adv Educ, Faculty Applied Sci Tech, Res Report82/315Google Scholar
  76. Slatkin, M 1987Gene flow and the geographic structure of natural populationsScience236787792CrossRefGoogle Scholar
  77. Slatkin, M 1996A correction to the exact test based on the Ewens sampling distributionGenet Res68259260CrossRefGoogle Scholar
  78. Waples, RS 1998Separating the wheat from the chaff-patterns of genetic differentiation in high gene flow speciesJ Hered89438445CrossRefGoogle Scholar
  79. Watts, RJ, Johnson, MS 2004Estuaries, lagoons and enclosed embayments: habitats that enhance population subdivision of inshore fishesMar Fresh Res55641651CrossRefGoogle Scholar
  80. Weir, BS, Cockerham, CC 1984Estimating F-statistics for the analysis of population structureEvolution3813581370dCrossRefGoogle Scholar
  81. Wirth, T, Bernatchez, L 2001Genetic evidence against panmixia in the European eelNature40910371040CrossRefGoogle Scholar
  82. Wright S (1978) “Variability within and among populations.” In: Evolution and the Genetics of Populations, Vol. 4 (Chicago: The University of Chicago Press)Google Scholar
  83. Yap, ES, Spencer, PBS, Chaplin, JA, Potter, IC 2000The estuarine teleost, Acanthopagrus butcheri (Sparidae), shows low levels of polymorphism at five microsatellite lociMol Ecol921552234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Christopher P. Burridge
    • 1
    • 2
  • Vincent L. Versace
    • 1
  1. 1.School of Life and Environmental SciencesDeakin UniversityWarrnamboolAustralia
  2. 2.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations