Marine Biotechnology

, Volume 8, Issue 4, pp 409–414 | Cite as

Phlorotannins as Radical Scavengers from the Extract of Sargassum ringgoldianum

  • Masaaki Nakai
  • Norihiko Kageyama
  • Koichi Nakahara
  • Wataru Miki
Original Article


To screen algal phlorotannins with antioxidative activities, 50% ethanol extracts of 25 Japanese marine algae were evaluated. Scavenging activity against superoxide anion radicals was frequently found with a high content of total phenolic compounds. Among these, the extract from the brown seaweed, Sargassum ringgoldianum, showed the strongest scavenging activity. The active fraction contained a mixture of high molecular weight polyphenols, phlorotannins that were found to be polymerized bifuhalol, as analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The scavenging activity of the fraction against superoxide anion radicals was estimated to be 1.0 μg/ml (IC50), which were approximately five times stronger than that of catechin.


Bifuhalol Phlorotannin Radical scavenger Sargassum ringgoldianum 


  1. Abe, Y, Okada, S, Nakao, R, Horii, T, Inoue, H, Taniguchi, S, Yamabe, S 1992A molecular orbital study on the reactivity of L-ascorbic acid towards OH radicalJ Chem Soc Perkin Trans222212232Google Scholar
  2. Benzie, IFF, Szeto, YT 1999Total antioxidant capacity of teas by the ferric reducing/antioxidant power assayJ Agric Food Chem47633636CrossRefGoogle Scholar
  3. Bielski, BHJ 1982Chemistry of ascorbic acid radicalsSeib, PATolbert, BM eds. Ascorbic Acid: Chemistry, Metabolism and Users, Advances in Chemistry Series, Vol. 200American Chemical SocietyWashington, DC81100Google Scholar
  4. Colon, M, Guevara, P, Gerwick, WH, Ballantine, D 19875′-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans J Nat Prod50368374CrossRefGoogle Scholar
  5. Fujiki, H, Suganuma, M, Okabe, S, Sueoka, N, Komori, A, Sueoka, E, Kozu, T, Tada, Y, Suga, K, Imai, K, Nakachi, K 1998Cancer inhibition by green teaMutat Res402307310Google Scholar
  6. Galli, F, Piroddi, M, Annetti, C, Aisa, C, Floridi, E, Floridi, A 2005Oxidative stress and reactive oxygen speciesContrib Nephrol149240260CrossRefGoogle Scholar
  7. Glombitza, KW, Keusgen, M 1995Fuhalols and deshydroxyfuhalols from the brown alga Sargassum spinuligerum Phytochemistry38987995CrossRefGoogle Scholar
  8. Glombitza, KW, Rosener, HU 1974Bifhalol: Ein diphenylather aus Bifurcaria bifurcata Phytochemistry1312451247(in German)CrossRefGoogle Scholar
  9. Hashimoto, F, Ono, M, Masuoka, C, Ito, Y, Sakata, Y, Shimizu, K, Nonaka, G, Nishioka, I, Nohara, T 2003Evaluation of the anti-oxidative effect (in vitro) of tea polyphenolsBiosci Biotechnol Biochem67396401CrossRefGoogle Scholar
  10. Haslam, E 1989Plant Polyphenols: Vegetable Tannins RevisitedCambridge University PressCambridge, UKGoogle Scholar
  11. Larson, RA 1988The antioxidants of higher plantsPhytochemistry27969978CrossRefGoogle Scholar
  12. Lee, JH, Park, JC, Choi, JS 1996The antioxidant activity of Ecklonia stolonifera Arch Pharm Res19223227CrossRefGoogle Scholar
  13. Lim, SN, Cheung, PCK, Ooi, VEC, Ang, PO 2002Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum J Agric Food Chem5038623866CrossRefGoogle Scholar
  14. Maldonado, PD, Rivero-Cruz, I, Mata, R, Pedraza-Chaverri, J 2005Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae)J Agric Food Chem5319962001CrossRefGoogle Scholar
  15. McCord, JM, Fridovich, I 1969The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygenJ Biol Chem24460566063Google Scholar
  16. Miura, S, Watanabe, J, Tomita, T, Sano, M, Tomita, I 1994The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+-mediated oxidative modification of low-density lipoproteinBiol Pharm Bull1715671572Google Scholar
  17. Nakai, M, Harada, M, Nakahara, K, Akimo, K, Shibata, H, Miki, W, Kiso, Y 2003Novel antioxidative metabolites in rat liver with ingested sesaminJ Agric Food Chem5116661670CrossRefGoogle Scholar
  18. Ogino, C, Taki, Y 1957Studies on the tannin of brown alga, Sargassum ringgoldianum HarvJ Tokyo Univ Fish4315Google Scholar
  19. Okuda, T 1999Novel aspects of tannins—renewed concepts and structure-activity relationshipsCurr Org Chem3609622Google Scholar
  20. Okuda, T 2005Systematics and health effects of chemically distinct tannins in medicinal plantsPhytochemistry6620122013CrossRefGoogle Scholar
  21. Okuda, T, Yoshida, T, Mori, K, Hatano, T 1981Tannins of medical plants and drugsHeterocycles1513231348CrossRefGoogle Scholar
  22. Ragan, MA, Craigie, JS 1976Physodes and the phenolic compounds of brown algae. Isolation and characterization of phloroglucinol polymers from Fucus vesiculosus (L.)Can J Biochem546673CrossRefGoogle Scholar
  23. Ragan, MA, Craigie, JS 1978Phenolic compounds in brown and red algaeHellebust, JACraigie, JS eds. Handbook of Phycological Methods—Physiological and Biochemical MethodsCambridge University PressCambridge, UK157179Google Scholar
  24. Rice-Evans, CS, Miller, NJ, Paganga, G 1996Structure-antioxidant activity relationships of flavonoids and phenolic acidsFree Radic Biol Med20933956CrossRefGoogle Scholar
  25. Shao, ZH, Becker, LB, Hoek, TL, Schumacker, PT, Li, CQ, Zhao, D, Wojcik, K, Anderson, T, Qin, Y, Dey, L, Yuan, CS 2003Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytesPharmacol Res47463469CrossRefGoogle Scholar
  26. Singleton, VL, Rossi, JA 1965Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagentsAm J Enol Vitic16144158Google Scholar
  27. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Sept 1, 243–268Google Scholar
  28. Takamatsu, S, Nagle, DG, Gerwick, WH 2004Secondary metabolites from marine cyanobacteria and algae inhibit LFA-1/ICAM-1-mediated cell adhesionPlanta Med70127131CrossRefGoogle Scholar
  29. Whitfield, FB, Helidoniotis, F, Shaw, KJ, Svoronos, D 1999Distribution of bromophenols in species of marine algae from eastern AustraliaJ Agric Food Chem4723672373CrossRefGoogle Scholar
  30. Xu, X, Song, F, Wang, S, Li, S, Xiao, F, Zhao, J, Yang, Z, Shang, S, Yang, L, Shi, J 2004Dibenzyl bromophenols with diverse dimerization patterns from the brown alga Leathesia nana J Nat Prod6716611666CrossRefGoogle Scholar
  31. Yan, XJ, Li, XC, Zhou, CX, Fan, X 1996Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum J Appl Phycol8201203CrossRefGoogle Scholar
  32. Yoshida, T, Hatano, T, Ito, H, Okuda, T 1999Highly oxidized ellagitannins and their biological activityBasic Life Sci66127144Google Scholar
  33. Zhao, J, Fan, X, Wang, S, Li, S, Shang, S, Yang, Y, Xu, N, Lu, Y, Shi, J 2004Bromophenol derivatives from the red alga Rhodomela confervoides J Nat Prod6710321035CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Masaaki Nakai
    • 1
  • Norihiko Kageyama
    • 1
  • Koichi Nakahara
    • 1
  • Wataru Miki
    • 1
  1. 1.Suntory Research CenterSuntory, Ltd.Mishima-gunJapan

Personalised recommendations