Advertisement

Marine Biotechnology

, Volume 8, Issue 6, pp 641–653 | Cite as

A Cell Line (HEW) from Embryos of Haddock (Melanogrammus aeglefinius) and Its Capacity to Tolerate Environmental Extremes

  • Steve P. Bryson
  • Elizabeth M. Joyce
  • D. John Martell
  • Lucy E. J. Lee
  • Shawn E. Holt
  • Steve C. Kales
  • Kazuhiro Fujiki
  • Brian Dixon
  • Niels C. Bols
Original Article

Abstract

Cell lines can be useful experimental tools for studying marine fish, which are often difficult to routinely obtain and maintain in the laboratory. As few cell lines are available from coldwater marine fish, cultures were initiated from late gastrula embryos of haddock (Melanogrammus aeglefinus) in Leibovitz's L-15 with fetal bovine serum (FBS). From one culture, a cell line (HEW) emerged that has been grown for close to 100 population doublings, was heteroploid, and expressed telomerase activity, all of which suggest HEW is immortal. Growth occurred only if FBS was present and was optimal at 12 to 18°C. Usually most cells had an epithelial-like morphology, but under some conditions, cells drew up into round central bodies from which radiated cytoplasmic extensions with multiple branches. These neural-like cells appeared within a few hours of cultures being placed at 28°C or being switch to a simple salt solution (SSS). At 28°C, cells died within 24 h. In SSS, HEW cells survived as a monolayer for at least 7 days. The sensitivity of HEW cells to morphological change and their capacity to withstand starvation should make them useful for investigating cellular responses to environmental stresses.

Keywords

fish cell line haddock embryo Melanogrammus aeglefinus osmolality stress telomerase 

Notes

Acknowledgments

The research was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to BD, LEJL, and NCB and to DJM by Fisheries and Oceans Canada (St. Andrews Biological Station, St. Andrews, NB). SPB was supported by the Academic Subvention Program of Fisheries and Oceans Canada.

References

  1. Aiken, DE 2003Early rearing of haddock: state of the artAqua Assoc Can (Spec Pub)71136Google Scholar
  2. Barker, KS, Quiniou, SMA, Wilson, MR, Bengten, E, Sturge, TB, Warr, GW, Clem, LW, Miller, NW 2000Telomerase expression and telomere length in immortal leukocyte lines from channel catfishDevelop Comp Immunol24583595CrossRefGoogle Scholar
  3. Béjar, J, Hong, Y, Ezura, Y 2002An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera productionTransgenic Res11279289CrossRefGoogle Scholar
  4. Bols, NC, Lee, LEJ 1994Cell lines: availability, propagation and isolationHochachka, PWMommsen, TP eds. Biochemistry and Molecular Biology of Fishes, Vol. 3ElsevierAmsterdam145159Google Scholar
  5. Bols, NC, Mosser, DD, Steels, GB 1992Temperature studies and recent advances with fish cells in vitroComp Biochem Physiol103A114CrossRefGoogle Scholar
  6. Bradford, CS, Miller, AE, Toumadje, A, Nishiyama, K, Shirahata, S, Barnes, DW 1997Characterization of cell cultures derived from Fugu, the Japanese pufferfishMol Mar Biol Biotechnol6279288Google Scholar
  7. Cesare, AJ, Griffith, JD 2004Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loopsMol Cell Biol2499489957CrossRefGoogle Scholar
  8. Chen, TR 1977In situ detection of mycoplasma contamination in cell cultures by Hoechst 33258 stainExp Cell Res104255262CrossRefGoogle Scholar
  9. Chen, SL, Ye, HQ, Sha, ZX, Hong, Y 2003Derivation of a pluripotent embryonic cell line from red sea bream blastulasJ Fish Biol63795805CrossRefGoogle Scholar
  10. Chen, SL, Sha, ZX, Ye, HQ 2003Establishment of a pluripotent embryonic cell lines from sea perch (Lateolabrax japonicus)Aquaculture218141151CrossRefGoogle Scholar
  11. Chen, SL, Ren, GC, Sha, ZX, Shi, CY 2004Establishment of a continuous embryonic cell line from Japanese flounder Paralicthys olivaceus for virus isolationDis Aquat Organ60241246Google Scholar
  12. Dayeh, VR, Schirmer, K, Bols, NC 2002Applying whole-water samples directly to fish cell cultures in order to evaluate the toxicity of industrial effluentWater Res3637273738CrossRefGoogle Scholar
  13. Dayeh VR, Schirmer K, Lee LEJ, Bols NC (2003) The use of fish-derived cell lines for investigation of environmental contaminants. Current Protocols in Toxicology (Wiley & Sons) 1.5.1–1.5.17.Google Scholar
  14. DePreval, C, Mach, B 1983The absence of beta-2 microglobulin in Daudi cells-active gene but inactive messenger RNAImmunogenetics17133140CrossRefGoogle Scholar
  15. DeWitte-Orr, SJ, Bols, NC 2005Gliotoxin-induced cytotoxicity in three salmonid cell llines: cell death by apoptosis and necrosisComp Biochem PhysiolC141147167Google Scholar
  16. Dmitrieva, NI, Burg, MB 2005Hypertonic stress responseMutat Res5696574Google Scholar
  17. Fernandez, RD, Yosimizu, M, Kimura, T, Ezura, Y 1993Establishment and characterization of seven continuous cell lines from freshwater fishJ Aquat Anim Health5137147CrossRefGoogle Scholar
  18. Ferron, A, Leggett, WC 1994An appraisal of condition measures for marine fish larvaeAdv Mar Biol30217303Google Scholar
  19. Freshney, RI 1992Culture of Animal Cells: A Manual of Basic TechniqueWiley-LissNew YorkGoogle Scholar
  20. Fryer, JL, Lannan, CN 1994Three decades of fish cell culture: a current listing of cell lines derived from fishesJ Tissue Cult Methods168794CrossRefGoogle Scholar
  21. Ganassin, RC, Tran, QH, Rabgey, TF, Bols, NC 1994Enhancement of proliferation in cultures of Chinook salmon embryo cells by interactions between inosine and bovine seraJ Cell Physiol160409416CrossRefGoogle Scholar
  22. Ganassin, RC, Sanders, SM, Kennedy, CJ, Joyce, EM, Bols, NC 1999Development of a cell line from Pacific herring, Clupea harengus pallasi, sensitive to both naphthalene cytotoxicity and infection by hemorrhagic septicemia virusCell Biol Toxicol15299309CrossRefGoogle Scholar
  23. Heath, MR 1992Field investigations of the early-life stages of marine fishAdv Mar Biol281174CrossRefGoogle Scholar
  24. Holen, E, Hamre, K 2003Towards obtaining long term embryonic stem cell like cultures from a marine flatfish, Scophtalmus maximus Fish Physiol Biochem29245252CrossRefGoogle Scholar
  25. Holmes, WN, Donaldson, EM 1969The body compartments and the distribution of electrolytesHoar, WSRandall, DJ eds. Fish Physiology, Vol. 1Academic PressNew York189Google Scholar
  26. Holt, SE, Norton, JC, Wright, WE, Shay, JW 1996Comparison of the telomeric repeat amplification protocol (TRAP) to the new TRAP-eze telomerase detection kitMethods Cell Sci18237248CrossRefGoogle Scholar
  27. Izuishi, K, Kato, K, Ogura, T, Kinoshita, T, Esumi, H 2000Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapyCancer Res6062016207Google Scholar
  28. Jensen, NJ, Christensen, K 1981A fish cell line from gonads of cod (Gadus morhua)Nord Vet-Med33492497Google Scholar
  29. Kales SC, Parks-Dely JA, Schulte P, Dixon B (2006) Beta-2-microglobulin expression is maintained in rainbow trout and Atlantic salmon kept at low temperatures. Fish Shellfish Immunol 21, 176–186Google Scholar
  30. Kang, MS, Oh, MJ, Kim, YJ, Kawai, K, Jung, SJ 2003Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel)J Fish Dis26657665CrossRefGoogle Scholar
  31. Komata, T, Kanzawa, T, Nashimoto, T, Aoki, H, Endo, S, Nameta, M, Yamamoto, T, Kondo, S, Tanak, R 2004Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cellsJ Neurooncol68101111CrossRefGoogle Scholar
  32. Kültz, D 2005Molecular and evolutionary basis of the cellular stress responseAnnu Rev Physiol672252557CrossRefGoogle Scholar
  33. LeFrancois, NR, Lemieux, H, Blier, PU 2002Biological and technical evaluation of the potential of marine and anadromous fish species for cold-water maricultureAquaculture Res3395108CrossRefGoogle Scholar
  34. Leibovitz, A 1963Growth and maintenance of tissue-cell cultures in free gas exchange with atmosphereAm J Hyg78173180Google Scholar
  35. Leibovitz, A 1977Preparation of medium L-15Tissue Culture Assoc Manual3557559CrossRefGoogle Scholar
  36. Lo, LC, Birren, SJ, Anderson, DJ 1991v-myc immortalization of early rat neural crest cells yields a clonal cell line which generates both glial and adrenergic progenitor cellsDev Biol145139153CrossRefGoogle Scholar
  37. Loo, DT, Althoen, MC, Cotman, CW 1994Down regulation of nestin by TGF-beta or serum in SFME cells accompanies differentiation into astrocytesNeuroReport515851588CrossRefGoogle Scholar
  38. Lu, P, Blesch, A, Tuszynski, MH 2004Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact?J Neurosci Res77174191CrossRefGoogle Scholar
  39. Martell, DJ, Kieffer, JD, Trippel, EA 2005Effects of temperature during early life history on embryonic and larval development and growth in haddockJ Fish Biol6615581575CrossRefGoogle Scholar
  40. O'Neill, KL, Fairbairn, DW, Smith, MJ, Poe, BS 1998Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell linesApoptosis3369375CrossRefGoogle Scholar
  41. Ossum, CG, Hoffmann, EK, Vijayan, MM, Holt, SE, Bols, NC 2004Characterization of a novel fibroblast-like cell line from rainbow trout and responses to sublethal anoxiaJ Fish Biol6411031116CrossRefGoogle Scholar
  42. Pang, PKT, Griffith, RW, Atz, JW 1977Osmoregulation in elasmobranchsAm Zool17365377Google Scholar
  43. Rasnick, D 2000Auto-catalyzed progression of aneuploidy explains the Hayflick limit of cultured cells, carcinogen-induced tumours in mice, and the age distribution of human cancerBiochem J348497506CrossRefGoogle Scholar
  44. Sambrook, J, Fritsch, EF, Maniatis, T 1989Molecular Cloning: A Laboratory ManualCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  45. Schirmer, K, Chan, AGJ, Greenberg, BM, Dixon, DG, Bols, NC 1997Methodology for demonstrating and measuring the photocytoxicity of fluoranthene to fish cells in cultureToxicol In Vitro11107119CrossRefGoogle Scholar
  46. Scott, WB, Scott, MG 1988Atlantic fishes of CanadaCan Bull Fish Aquat Sci219731Google Scholar
  47. Slater, MA, Mosser, DD, Bols, NC 1983Established cell lines from different groups of vertebrates undergo metabolic cooperation with one anotherIn Vitro19683692Google Scholar
  48. Stewart, SA 2005Telomere maintenance and tumorigenesis: an “ALT” ernative roadCurr Mol Med5253257CrossRefGoogle Scholar
  49. Waymouth, C 1973Determination and survey of osmolality in culture mediaKruse, PF,Jr.Paterson, MK,Jr. eds. Tissue Culture: Methods and ApplicationsAcademic PressNew York703709Google Scholar
  50. Woodbury, D, Schwarz, EJ, Prockop, DL, Black, IB 2000Adult rat and human bone marrow stromal cells differentiate into neuronsJ Neurosci Res61364370CrossRefGoogle Scholar
  51. Wu, YY, Mujtaba, T, Han, SSW, Fischer, I, Rao, MS 2002Isolation of a glial-restricted tripotential cell line from embryonic spinal cord culturesGlia386579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Steve P. Bryson
    • 1
  • Elizabeth M. Joyce
    • 1
  • D. John Martell
    • 2
  • Lucy E. J. Lee
    • 3
  • Shawn E. Holt
    • 4
    • 5
  • Steve C. Kales
    • 1
  • Kazuhiro Fujiki
    • 1
  • Brian Dixon
    • 1
  • Niels C. Bols
    • 1
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada
  2. 2.Fisheries and Oceans CanadaSt. Andrews NBCanada
  3. 3.Department of BiologyWilfrid Laurier UniversityWaterlooCanada
  4. 4.Departments of Pathology, Human Genetics, Pharmacology & ToxicologyMassey Cancer CenterRichmondUSA
  5. 5.Mount Desert Biological LaboratorySalisbury CoveUSA

Personalised recommendations