Advertisement

Marine Biotechnology

, Volume 8, Issue 2, pp 149–160 | Cite as

Molecular Detection of Marine Invertebrate Larvae

  • Shana K. GoffrediEmail author
  • William J. Jones
  • Christopher A. Scholin
  • Roman MarinIII
  • Robert C. Vrijenhoek
Original Article

Abstract

The ecological patterns of many invertebrate larvae remain an ongoing mystery, in large part owing to the difficult task of detecting them in the water column. The development of nucleic-acid–based technology has the potential to resolve this issue by direct identification and monitoring of embryonic and larval forms in situ. We report herein on the successful development and application of nucleic-acid–based sandwich hybridization assays that detect barnacles using rRNA-targeted probes with both group-(order Thoracica) and species-(Balanus glandula) specificity. Primary results include the determination of target 18S rRNA sequences and the construction of “capture” probes for detection of larvae using hybridization techniques. In addition, we modified existing protocols for whole cell hybridization of invertebrate larvae as confirmation of the sandwich hybridization results. We used both hybridization techniques successfully in the laboratory on a plankton time series collected over 3 months, as well as a week-long in situ deployment of the technique in Monterey Bay, CA. The adaptability of this technology promises to be further applicable to various organisms and could be used to enhance our understanding of larval presence in the world's oceans.

Keywords

Balanus barnacle hybridization larvae probe ribosomal RNA 

Notes

Acknowledgments

The authors thank the R/V Zephyr and Shana Rae captains and crew; S. Hallam, J. Tyrell, S. Jensen, G. Massion, B. Roman, and S. Johnson for laboratory and field support; C. Braby for invaluable advice and assistance in collecting barnacles and Hopkins Marine Station temperature data; and J. Ray at Orca, Inc. Funding was provided by The David and Lucile Packard Foundation.

References

  1. Barnes, H, Barnes, M 1959The naupliar stages of Balanus nubilus DarwinCan J Zool371523Google Scholar
  2. Branscomb, ES, Vedder, K 1982A description of the naupliar stages of the barnacles Balanus glandula Darwin, Balanus cariosus, Pallas, and Balanus crenatus Bruguiere (Cirripedia, Thoracica)Crustaceana428395CrossRefGoogle Scholar
  3. Brown, SK, Roughgarden, J 1985Growth, morphology, and laboratory culture of larvae of Balanus glandula (Cirripedia: Thoracica)J Crustac Biol5574590Google Scholar
  4. Caron, DA, Countway, PD, Brown, MV 2004The growing contribution of molecular biology and immunology to protistan ecology: molecular signatures as ecological toolsJ Eukaryot Microbiol513848CrossRefGoogle Scholar
  5. Deagle, BE, Bax, N, Hewitt, CL, Patil, JG 2003Development and evaluation of a PCR-based test for detection of Asterias (Echinodermata: Asteroidea) larvae in Australian plankton samples from ballast waterMar Freshw Res54709719CrossRefGoogle Scholar
  6. Eckman, JE 1996Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebratesJ Exp Mar Biol Ecol200207237CrossRefGoogle Scholar
  7. Greene, CH 1990A brief review and critique of zooplankton sampling methods: Copepodology for the larval ecologistOphelia32109113Google Scholar
  8. Halanych, KM, Lutz, RA, Vrijenhoek, RC 1998Evolutionary origins and age of vesitimentiferan tube wormsCah Biol Mar39355358Google Scholar
  9. Levin, L, Huggett, D, Myers, P, Bridges, T, Weaver, J 1993Rare-earth tagging methods for the study of larval dispersal by marine invertebratesLimnol Oceanogr38346360Google Scholar
  10. MaKinster, JG, Felder, DL, Chlan, C, Boudreaux, M, Neigel, JE 1999PCR amplification of a middle repetitive element detects larval stone crabs (Crustacea: Decapoda: Menippidae) in estuarine plankton samplesMar Ecol Prog Ser181161168Google Scholar
  11. Medlin, L, Elwood, HJ, Stickel, S, Sogin, ML 1988The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regionsGene71491499CrossRefGoogle Scholar
  12. Miller, PE, Scholin, CA 1996Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probesJ Phycol32646655CrossRefGoogle Scholar
  13. Miller, P, Scholin, C 2000On detection of Pseudo-nitzschia (Bacillariophyceae) species using whole cell hybridization: sample fixation and stabilityJ Phycol36238250Google Scholar
  14. Mullineaux, LS, Butman, CA 1991Initial contact, exploration and attachment of barnacle cyprids settling in flowMar Biol11093103CrossRefGoogle Scholar
  15. Newman, WA, Abbott, DP 1980Cirripedia: The barnaclesMorris, RHAbbott, DPHaderlie, EC eds. Intertidal Invertebrates of CaliforniaStanford University PressStanford, CA504535Google Scholar
  16. Pace, NR 1997A molecular view of microbial diversity and the biosphereScience276734740CrossRefGoogle Scholar
  17. Palumbi, SR 2003Population genetics, demographic con-nectivity, and the design of marine reservesEcol Appl13S146S158Google Scholar
  18. Pineda, J 2000Linking larval settlement to larval transport: assumptions, potentials, and pitfallsOceanog East Pacific184105Google Scholar
  19. Roughgarden, J, Gaines, S, Possingham, H 1988Recruitment dynamics in complex life cyclesScience24114601466Google Scholar
  20. Scheltema, RS 1986On dispersal and planktonic larvae of benthic invertebrates: An eclectic overview and summary of problemsBull Mar Sci39290322Google Scholar
  21. Scholin, C, Buck, K, Britschgi, T, Cangelosi, G, Chavez, E 1996Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formatsJ Phycol35190197Google Scholar
  22. Scholin, CA, Miller, P, Buck, KR, Chavez, F, Harris, P, Haydock, P,  et al. 1997Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using LSU rRNA-targeted probesLimnol Oceanogr4212651272CrossRefGoogle Scholar
  23. Scholin C, Massion G, Mellinger E, Brown M, Wright D, Cline D (1998). The development and application of molecular probes and novel instrumentation for detection of harmful algae. In: Ocean Community Conference ’98 Proceedings, Marine Technology Society, pp. 367–370Google Scholar
  24. Scholin, C, Marin, R, Miller, P, Doucette, G, Powell, C, Howard, J,  et al. 1999DNA probes and a receptor binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species anddomoic acid activity in cultured and natural samplesJ Phycol3513561367CrossRefGoogle Scholar
  25. Scholin CA, Massion EI, Wright DK, Cline DE, Mellinger E, Brown M (2001). Aquatic autosampler device. U.S. Pat. No. 6187530Google Scholar
  26. Scholin CA, Doucette GJ, Cembella AD (in press). Prospects for developing automated systems for insitu detection of harmful algae and their toxins. In: Monographs on Oceanographic Methodology, Babin, M, Roesler, C, Cullen, J, eds. (UNESCO)Google Scholar
  27. Shanks, AL 1986Tidal periodicity in the daily settlement of intertidal barnacle larvae and an hypothesized mechanism for the cross-shelf transport of cypridsBiol Bull170429440Google Scholar
  28. Strathmann, MF 1987Reproduction and Development of Marine Invertebrates of the Northern Pacific CoastUniversity of Washington PressSeattleGoogle Scholar
  29. Strathman, RR 1993Hypothesis on the origins of marine larvaeAnn Rev Ecol Syst2489117Google Scholar
  30. Thorson, G 1950Reproductive and larval ecology of marine bottom invertebratesBiol Rev25145Google Scholar
  31. Ness, J, Chen, L 1991The use of oligodeoxynucleotide probes in chaotrope based hybridization solutionsNucleic Acids Res1951435151Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Shana K. Goffredi
    • 1
    • 2
    Email author
  • William J. Jones
    • 1
  • Christopher A. Scholin
    • 1
  • Roman MarinIII
    • 1
  • Robert C. Vrijenhoek
    • 1
  1. 1.Monterey Bay Aquarium Research InstituteMoss LandingUSA
  2. 2.Environmental Science and EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations