Marine Biotechnology

, Volume 8, Issue 3, pp 246–259 | Cite as

Colonization of the Gastrointestinal Tract of the Farmed South African Abalone Haliotis midae by the Probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1

  • Brett M. Macey
  • Vernon E. Coyne
Original Article


Viable cell counts and/or in situ hybridization were used to determine whether the probionts Vibrio midae SY9, Cryptococcus sp. SS1, and Debaryomyces hansenii AY1 can colonize the gastrointestinal tract of the South African abalone Haliotis midae. The number of culturable probiotic cells reisolated from H. midae fed probiotic-supplemented feed for 3 weeks ranged from 106 to 107 cfu/g gut material. A significant decrease (P < 0.05) in probiont numbers 2 days after feeding the probiotic-supplemented feed had been halted correlated with a significant decrease (P < 0.05) in intestinal protease and amylase activity. There was a positive correlation between Cryptococcus sp. SS1 and amylase activity (r2 = 0.681) and V. midae SY9.8 and protease activity (r2 = 0.711) in the H. midae intestine. Although culturable probionts were isolated from abalone that had not been fed probiotic-supplemented feed for a 2-week period, the drop in the number of probiotic cells colonizing the abalone digestive tract 2 days after feeding with the probiotic-supplemented feed had been halted indicates that farmed abalone should be fed probiotic-supplemented feed at least every second day for maximum benefit.


abalone amylase colonization in situ hybridization probiotics protease 



The authors thank Sea Plant Products and Hermanus Abalone for provision of abalone and Di James for conducting the sequencing reactions. The authors acknowledge funding from the Abalone Farmers Association of Southern Africa, Technology and Human Resource for Industry Programme (Grant No. 1608), National Research Foundation (Grant No. 2053565), the Department of Environmental Affairs and Tourism, and the University of Cape Town Research Council.


  1. Altschul, S, Gish, W, Miller, W, Meyers, E, Lipman, D 1989Basic local alignment search toolJ Mol Biol215403410CrossRefGoogle Scholar
  2. Andlid T (1995) Ecological physiology of yeasts colonizing the intestine of fish. PhD thesis, Lunberg Institute, Goteberg University, SwedenGoogle Scholar
  3. Ausubel, JF, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl, K 1989Current Protocols in Molecular BiologyGreen Publishing Associates and Wiley-InterscienceNew YorkGoogle Scholar
  4. Burgents, JE, Burnett, KG, Burnett, LE 2005Effects of hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the pacific white shrimpBiol Bull208159168Google Scholar
  5. Church, GM, Gilbert, W 1984Genomic sequencingProc Natl Acad Sci U S A8119911995CrossRefGoogle Scholar
  6. Chythanya, R, Karunasagar, I, Karunasagar, I 2002Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strainAquaculture208110CrossRefGoogle Scholar
  7. Deane, SM, Robb, FT, Woods, DR 1986Isolation and characterization of a Vibrio alginolyticus mutant that overproduces extracellular proteaseJ Gen Microbiol132893898Google Scholar
  8. Edgcomb, VP, McDonald, JH, Devereux, R, Smith, D 1999Estimation of bacterial cell numbers in humic acid-rich salt marsh sediments with probes directed to 16S ribosomal DNAAppl Environ Microbiol6515161523Google Scholar
  9. Egan, S, James, S, Kjelleberg, S 2002Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicateAppl Environ Microbiol68372378CrossRefGoogle Scholar
  10. Erasmus, JH 1996. The role of enteric bacteria in the abalone, Haliotis midae. MSc thesis, University of Cape TownGoogle Scholar
  11. Erasmus, JH, Cook, PA, Coyne, VE 1997The role of bacteria in the digestion of seaweed by the abalone Haliotis midaeAquaculture155377386CrossRefGoogle Scholar
  12. Garret, RH, Grisham, CM 1995BiochemistrySaunders College PublishingFort Worth, TXGoogle Scholar
  13. Gatesoupe, F-J 1999The use of probiotics in aquacultureAquaculture180147165CrossRefGoogle Scholar
  14. Gatesoupe, F-J 2002Probiotic and formaldehyde treatments of Artemia nauplii as food for larval pollack, Pollachius pollachiusAquaculture212347360CrossRefGoogle Scholar
  15. Gildberg, A, Mikkelsen, H, Sandaker, E, Ringø, E 1997Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua)Hydrobiologia352279285CrossRefGoogle Scholar
  16. Gomez-Gil, B, Roque, A, Turnbull, JF 2000The use and selection of probiotic bacteria for use in the culture of larval aquatic organismsAquaculture191259270CrossRefGoogle Scholar
  17. Gullian, M, Thompson, F, Rodriguez, J 2004Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannameiAquaculture233114CrossRefGoogle Scholar
  18. Harmsen, HJM, Gibson, GR, Elfferich, P, Raangs, GC, Wildeboer-Veloo, ACM, Argaiz, A, Roberfroid, MB, Welling, GW 1999Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human faecal bacteriaFEMS Microbiol Lett183125129Google Scholar
  19. Harris, JO, Burke, CM, Maguire, GB 1998Characterization of the digestive tract of greenlip abalone, Haliotis laevigata Donovan, I. Morphology and histologyJ Shellfish Res17979988Google Scholar
  20. Hermansson, A, Lindgren, PE 2001Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCRAppl Environ Microbiol67972976CrossRefGoogle Scholar
  21. Li, S, Cullen, D, Hjort, M, Spear, R, Andrews, JH 1996Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA geneAppl Environ Microbiol6215141518Google Scholar
  22. Li, S, Spear, RN, Andrews, JH 1997Quantitative fluorescence in situ hybridization of Aureobasidium pillans on microscope slides and leaf surfacesAppl Environ Microbiol6332613267Google Scholar
  23. Li, J, Tan, B, Mai, K, Ai, O, Zhang, W, Xu, W, Liufu, Z, Ma, H (2005). Comparative study between probiotic bacterium Arthrobacter XE-7 and chloramphenicol on protection of Penaeus chinensis post-larvae from pathogenic vibrios. Aquaculture (in press).Google Scholar
  24. Longeon, A, Peduzzi, J, Barthélemy, M, Corre, S, Nicolas, J-L, Guyot, M 2004Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X153Mar Biotechnol6633641CrossRefGoogle Scholar
  25. Macey, BM, Coyne, VE 2005Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatmentAquaculture245249261CrossRefGoogle Scholar
  26. Matthysse, AG, Stretton, S, Dandie, C, McClure, NC, Goodman, AE 1996Construction of GFP vectors for use in Gram-negative bacteria other than Escherichia coliFEMS Microbiol Lett1458794Google Scholar
  27. Miller, GL 1959The use of dinitrosalicyclic acid reagent for determination of reducing sugarAnal Chem31426428CrossRefGoogle Scholar
  28. Miller, VL, Mekalonos, JJ 1988A novel suicide vector and its use in the construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in V. cholerae requires ToxRJ Bacteriol17025752583Google Scholar
  29. Nikoskelainen, S, Ouwehand, AC, Bylund, G, Salminen, S, Lilius, E-M 2003Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus)Fish Shellfish Immunol15443452CrossRefGoogle Scholar
  30. Panigrahi, A, Kiron, V, Puangkaew, J, Kobayashi, T, Satoh, S, Sugita, H 2005The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykissAquaculture243241254CrossRefGoogle Scholar
  31. Peccia, J, Marchand, EA, Silverstein, J, Hernandez, M 2000Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus AcidiphiliumAppl Environ Microbiol6630653072CrossRefGoogle Scholar
  32. Rengpipat, S, Rukpratanporn, S, Piyatiratitivorakul, S, Menasveta, P 2000Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiotic bacterium (Bacillus S11)Aquaculture191271288CrossRefGoogle Scholar
  33. Ringø, E 1999Short communication. Does Carnobacterium divergens isolated from Atlantis salmon, Salmo salar L., colonize the gut of early developing turbot, Scophthalmus maximus L., larvaeAquac Res30229232CrossRefGoogle Scholar
  34. Ringø, E, Vadstein, O 1998Colonization of Vibrio pelagius and Aeromonas caviae in early developing turbot (Scophthalmus maximus L.) larvaeJ Appl Microbiol84227233CrossRefGoogle Scholar
  35. Robertson, PAW, O'Dowd, C, Burrels, C, Williams, P, Austin, B 2000Use of Carnobacterium sp. as a probiotic for atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum)Aquaculture185235243CrossRefGoogle Scholar
  36. Schroeder DC (2001) Isolation and characterization of a ((1–4) agarase of an epiphytic bacterial pathogen, Pseudoalteromonas gracilis B9, of the red alga, Gracilaria gracilis. PhD thesis, University of Cape TownGoogle Scholar
  37. Sghir, A, Gramet, G, Suau, A, Rochet, V, Pochart, P, Dore, J 2000Quantification of bacterial groups within human faecal flora by oligonucelotide probe hybridizationAppl Environ Microbiol6622632266CrossRefGoogle Scholar
  38. Stretton, S, Techkarnjanaruk, S, McLennan, AM, Goodman, AE 1998Use of green fluorescent protein to tag and investigate gene expression in marine bacteriaAppl Environ Microbiol6425542559Google Scholar
  39. Tovar, D, Zambonino, J, Cahu, C, Gatesoupe, FJ, Vázquez-Juárez, R, Lésel, R 2002Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvaeAquaculture204113123CrossRefGoogle Scholar
  40. Tovar-Ramírez, D, Zambonino Infante, J, Cahu, C, Gatesoupe, FJ, Vázquez-Juárez, R 2004Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval developmentAquaculture234415427CrossRefGoogle Scholar
  41. Verschuere, L, Rombaut, G, Sorgeloos, P, Verstraete, W 2000Probiotic bacteria as biological control agents in aquacultureMicrobiol Mol Biol Rev64655671CrossRefGoogle Scholar
  42. Vine, NG, Leukes, WD, Kaiser, H 2004In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish mucusFEMS Microbiol Lett231145152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of Cape TownRondeboschSouth Africa
  2. 2.Hollings Marine LaboratoryCharlestonUSA

Personalised recommendations