Advertisement

Marine Biotechnology

, Volume 7, Issue 4, pp 381–388 | Cite as

Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes

  • Ana P. Carvalho
  • F. Xavier Malcata
Article

Abstract

The microalga Pavlova lutheri is a potential source of economically valuable docosahexaenoic and eicosapentaenoic acids. Specific chemical and physical culture conditions may enhance their biochemical synthesis. There are studies relating the effect of CO2 on growth; however, this parameter should not be assessed independently, as its effect strongly depends on the light intensity available. In this research, the combined effects of light intensity and CO2 content on growth and fatty acid profile in P. lutheri were ascertained, in order to optimize polyunsaturated fatty acid production. The influence of the operation mode was also tested via growing the cultures by batch and by continuous cultivation. Higher light intensities associated with lower dilution rates promoted increases in both cell population and weight per cell. Increased levels of CO2 favored the total lipid content, but decreased the amounts of polyunsaturated fatty acids. Mass productivities of eicosapentaenoic acid (3.61 ± 0.04 mg · L−1 · d−1) and docosahexaenoic acid (1.29 ± 0.01 mg · L−1 · d−1) were obtained in cultures supplied with 0.5% (v/v) CO2, at a dilution rate of 0.297 d−1 and a light intensity of 120 μE · m−2 · s−1.

Keywords

photobioreactor docosahexaenoic acid eicosapentaenoic acid polyunsaturated fatty acids 

Notes

Acknowledgments

This research effort received financial support by a Ph.D. fellowship (BD/2838/93-IF) for A.P.C., issued by program PRAXIS XXI, and a project grant (MICROPESCA/0072/04), issued by program MARE.

References

  1. Beardall, J, Johnston, A, Raven, J 1998Environmental regulation of CO2-concentrating mechanisms in microalgaeCan J Bot7610101017CrossRefGoogle Scholar
  2. Becker, EW 1994Microalgae: Biotechnology and MicrobiologyCambridge University PressCambridge, U.K.Google Scholar
  3. Bligh, WJ, Dyer, WJ 1959A rapid method of total lipid extraction and purificationCan J Biochem Physiol37911917PubMedGoogle Scholar
  4. Carvalho, AP, Malcata, FX 2000Effect of culture media on production of Pavlova lutheriCryptog Algol215971CrossRefGoogle Scholar
  5. Carvalho, AP, Malcata, FX 2003Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperatureBiotechnol Prog1911281135CrossRefPubMedGoogle Scholar
  6. Chrismadha, T, Borowitzka, MA 1994Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactorJ Appl Phycol66774Google Scholar
  7. Cohen, Z, Vonshak, A, Richmond, A 1988Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rateJ Phycol24328332Google Scholar
  8. Dunstan, GA, Volkman, JK, Barret, SM, Garland, CD 1993Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass cultureJ Appl Phycol57183Google Scholar
  9. Firestone, D 1994The Official Methods and Recommended Practices of the American Oil Chemists’ SocietyAmerican Oil Chemist’ SocietyChampaign, Ill.Google Scholar
  10. Kaplan, D, Richmond, AE, Dubinsky, Z, Aaronson, S 1986CRC Handbook of Microalgal Mass CultureCRC PressBoca Raton, Fla.Google Scholar
  11. Lepage, G, Roy, C 1984Improved recovery of fatty acid through direct transesterification without prior extraction or purificationJ Lipid Res2513911396PubMedGoogle Scholar
  12. Molina-Grima, E, Camacho, FG, Pérez, JAS, Sanchéz, JLG 1994aBiochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensityProc Biochem29119126CrossRefGoogle Scholar
  13. Molina-Grima, E, Pérez, JAS, Camacho, FG, Fernandez, FGA, Sevilla, JMF, Sanz, FV 1994bEffect of dilution rate on eicosapentaenoic acid productivity of Phaeodactylum tricornutum UTEX640 in outdoor chemostat cultureBiotechnol Lett1610351040CrossRefGoogle Scholar
  14. Negoro, M, Shioji, N, Miyamoto, K, Miura, Y 1991Growth of microalgae in high CO2 gas and effects of SOX and NOXAppl Biochem Biotechnol28/29877885Google Scholar
  15. Pronina, NA, Rogova, NB, Furnadzhieva, S, Klyachko-Gurvich, GL 1998Effect of CO2 concentration on the fatty acid composition of lipids in Chlamydomonas reinhardtii ω-3, a mutant deficient in CO2−concentrating mechanismRussian J Plant Physiol45447455Google Scholar
  16. Reis, A, Gouveia, L, Veloso, V, Fernandes, HL, Empis, JA, Novais, JM 1996Eicosapentaenoic acid–rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactorBior Technol558388CrossRefGoogle Scholar
  17. Robin, JH 1995The importance of n-6 fatty acids in the culture of marine fish larvaePittman, KBatty, RSVerreth, J eds. Proceedings of the Symposium in Mass Rearing of Juvenile FishBergenNorway106111Google Scholar
  18. Sargent JR, Bell JG, Bell MV, Henderson, RJ, and Tocher, DR (1994) Marine organisms as models for essential fatty acid research. In: Proceedings of the 3rd International Marine Biotechnology Conference. (Tromsoe, Norway: Tromsoe University, 94)Google Scholar
  19. Sato, N, Tsuzuki, M, Kawaguchi, A 2003Glycerolipid synthesis in Chlorella kessleri 11 h, II: effect of the CO2 concentration during growth. BiochimBiophys Acta16333542Google Scholar
  20. Sorgeloos, P, Dehasque, M, Dhert, P, Lavens, P 1995Review of some aspects of marine fish larviculturePittman, KBatty, RSVerreth, J eds. Proceedings of the Symposium in Mass Rearing of Juvenile FishBergenNorwaypp 138142Google Scholar
  21. Sukenik, A, Carmeli, Y 1989Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis spJ Phycol25686692CrossRefGoogle Scholar
  22. Sukenik, A, Yamaguchi, Y, Livne, A 1993aAlterations in lipid molecular species of the marine eustigmatophyte Nannochloropsis spJ Phycol29620626CrossRefGoogle Scholar
  23. Sukenik, A, Zmora, O, Carmeli, Y 1993bBiochemical quality of marine unicellular algae with special emphasis on lipid composition, II: Nannochloropsis spAquaculture117313326CrossRefGoogle Scholar
  24. Tsuzuki, M, Ohnuma, E, Sato, N, Takaku, T, Kawaguchi, A 1990Effects of CO2 concentration during growth on fatty acid composition in microalgaePlant Physiol93851856Google Scholar
  25. Volkman, JK, Jeffrey, SW, Nichols, PD, Rogers, GL, Garland, CD 1989Fatty acid and lipid composition of 10 species of microalgae used in maricultureJ Exp Mar Biol Ecol128219240CrossRefGoogle Scholar
  26. Volkman, JK, Dunstan, GA, Jeffrey, SW, Kearney, PS 1991Fatty acids from microalgae of the genus PavlovaPhytochem3018551859CrossRefGoogle Scholar
  27. Volkman, JK, Dunstan, GA, Barret, SM, Nichols, PD, Jeffrey, SW 1992Essential polyunsaturated fatty acids of microalgae used as feedstocks in aquacultureAllan, GLDall, W eds. Proceedings of the Aquaculture Nutrition WorkshopNSW FisheriesSalamander Bay, Australiapp 180186Google Scholar
  28. Yongmanitchai, W, Ward, OP 1991Screening of algae for potential alternative sources of eicosapentaenoic acidPhytochemistry3029632967CrossRefGoogle Scholar
  29. Yongmanitchai, W, Ward, OP 1992Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systemsJAOCS69584590Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Escola Superior de BiotecnologiaUniversidade Católica PortuguesaPortoPortugal

Personalised recommendations