Marine Biotechnology

, Volume 7, Issue 3, pp 173–178 | Cite as

A Highly Active Alkaline Phosphatase from the Marine Bacterium Cobetia

  • E. Yu Plisova
  • L.A. Balabanova
  • E.P. Ivanova
  • V. B. Kozhemyako
  • V. V. Mikhailov
  • E.V. Agafonova
  • V.A. Rasskazov
Article

Abstract

An alkaline phosphatase with unusually high specific activity has been found to be produced by the marine bacterium Cobetia marina (strain KMM MC-296) isolated from coelomic liquid of the mussel Crenomytilus grayanus. The properties of enzyme, such as a very high specific activity (15000 DE U/1 mg of protein), no activation with divalent cations, resistance to high concentrations of inorganic phosphorus, as well as substrate specificity toward 5′ nucleotides suggest that the enzyme falls in an intermediate position between unspecific alkaline phosphatases (EC 3.1.3.1) and 5′ nucleotidases (EC 3.1.3.5).

Keywords

alkaline phosphatase purification properties specificity marine bacterium Cobetia marina. 

References

  1. Ammerman, J.W., Azam, F. 1985Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regenerationScience22713381340Google Scholar
  2. Arahal, D.R., Castillo, A.M., Ludwig, W., Schleifer, K.H., Ventosa, A. 2002Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonodaceae, to include the species Halomonas marinaSyst Appl Microbiol25207211[Validation list 88. (2002) Int J Syst Evol Microbiol 52:1915–1916.]PubMedGoogle Scholar
  3. Bjorkman, K., Karl, D. 1994Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal watersMar Ecol Prog Ser111265273Google Scholar
  4. Bradford, M.M. 1976A rapid and sensitive method for the quantitation of microgram quantities of protein-dye bindingAnal Biochem72248254PubMedGoogle Scholar
  5. Chen, P.S., Toribara, I.T.Y., Warner, H. 1956Microdetermination of phosphorusAnal Chem2817561758CrossRefGoogle Scholar
  6. Chen, Q.X., Zheng, W.Z., Lin, J.Y., Shi, Y., Xie, W.Z., Zhou, H.M. 2000Effect of metal ions on the activity of green crab (Scylla serrata) alkaline phosphataseInt J Biochem Cell Biol32879885CrossRefPubMedGoogle Scholar
  7. Cotner, J.B., Wetzel, R.G. 19915′-Nucleotidase activity in a eutrophic lake and an oligotrophic lakeAppl Environ Microbiol5713061312Google Scholar
  8. Fedosov, I.V., Mikhailov, V.V., Jigalina, I.I., Ivanova, E.P., Kozhemyako, V.B., Onoprienko, N.B., Rasskazov, V.A., Elyakov, G.B. 1991A highly active alkaline phosphatase from marine bacteriaDoklady Acad Nauk USSR320485487Google Scholar
  9. Gate, R.L., Ehrenfels, C.W., Wysk, M., lizard, R., Voyta, J.C., Murphy, O.J.,III, Bronstein, I. 1991Genomic Southern analysis with alkaline phosphatase- conjugated oligonucleotide probes and the chemiluminescent substrate AMPPDGATA8102106Google Scholar
  10. Gonzales Canales, M.L., Martin Rio, M.P. 1985Enzymes in marine invertebratesRev Int Oceanogr Med59–60917Google Scholar
  11. Hauksson, J.B., Andresson, O.S., Asgeirsson, B. 2000Heat-labile bacterial alkaline phosphatase from a marine Vibrio spEnzyme Microb Technol276673CrossRefPubMedGoogle Scholar
  12. Hawrylak, K., Stinson, R.A. 1988The solubilization of tetrameric alkaline phosphatase from human liver and its conversion into various forms by phosphatidylinositol phospholipase C or proteolysisJ Biol Chem263368373PubMedGoogle Scholar
  13. Ivanova, E.P., Frolova, G.M., Mikhailov, V.V., Gorschkova, N.M. 1992Special screening of alkaline phosphatase of bacterial originsJ Prikladnoi Biokhymii Mikrobiol28726730Google Scholar
  14. Ivanova, E.P., Mikhailov, V.V., Plisova, E.J., Balabanova, L.A., Svetashev, V.V., Vysockyi, M.V., Stepanenko, V.I., Rasskazov, V.A. 1994Characterization of the marine bacterium Deleya marina producing highly active alkaline phosphatase and associated with the mussel Crenomytilus grayanusBiol Morya (in Russian J Mar Biol)20340545Google Scholar
  15. Kobori, H., Taga, N. 1980Extracellular alkaline phosphatase from marine bacteria: purification and properties of extracellular phosphatase from a marine Pseudomonas spCan J Microbiol26833838Google Scholar
  16. Kobori, H., Sullivan, C.W., Shizya, H. 1984Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5′-end-labeling of nucleic acidsProc Natl Acad Sci U S A8166916695Google Scholar
  17. Laemmli, U.K. 1970Cleavage of structural proteins during the assembly of head of bacteriofage T4Nature277680685CrossRefGoogle Scholar
  18. McComb, R.B., Bowers, G.N.,Jr., Posen, S. 1979Alkaline PhosphataseN.Y.: Plenum PressNew YorkGoogle Scholar
  19. Olsen, R.L., Overbo, K., Myrnes, B. 1991Alkaline phosphatase from the hepatopancreas of shrimp (Pandalus borealis): a dimeric enzyme with catalitically active subunitsComp Biochem Physiol99B755761Google Scholar
  20. Paul, J.H., Jeffrey, W.H., Cannon, J.P. 1990Production of dissolved DNA, RNA, and protein by microbial populations in a Florida reservoirAppl Environ Microbiol5629572962PubMedGoogle Scholar
  21. Poe, R.W., Sangadala, V.S., Brewer, J.M. 1993Effects of various salts on the steady-state enzymatic-activity of Esherichia coli alkaline-phosphataseJ Inorg Biochem50173180CrossRefPubMedGoogle Scholar
  22. Rina, M., Pozidis, C., Mavromatis, K., Tzanodaskalaki, M.L., Kokkinidis, M., Bouriotis, V. 2000Alkaline phosphatase from the Antarctic strain TAB5: properties and psychrophilic adaptationsEur J Biochem26712301238CrossRefPubMedGoogle Scholar
  23. Zappa, S., Rolland, J.-L., Flament, D., Gueguen, Ya., Boudrant, J., Dietrich, J. 2001Characterization of a highly thermostable alkaline phosphatase from the Euryarchaeon Pyrococcus abyssiAppl Environ Microbiol6745044511CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • E. Yu Plisova
    • 1
  • L.A. Balabanova
    • 1
  • E.P. Ivanova
    • 1
  • V. B. Kozhemyako
    • 1
  • V. V. Mikhailov
    • 1
  • E.V. Agafonova
    • 1
  • V.A. Rasskazov
    • 1
  1. 1.Pacific Institute of Bioorganic ChemistryFar East Branch of the Russian Academy of SciencesRussia

Personalised recommendations