Marine Biotechnology

, Volume 6, Issue 5, pp 463–474 | Cite as

Molecular Cloning and Functional Characterization of Fatty Acyl Desaturase and Elongase cDNAs Involved in the Production of Eicosapentaenoic and Docosahexaenoic Acids from α-Linolenic Acid in Atlantic Salmon (Salmo salar)

  • Nicola Hastings
  • Morris K. Agaba
  • Douglas R. Tocher
  • Xiaozhong Zheng
  • Cathryn A. Dickson
  • James R. Dick
  • Alan J. Teale
Article

Abstract

Fish are the only major dietary source for humans of ω-3 highly unsaturated fatty acids (HUFAs) and with declining fisheries farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term and will constrain continuing growth of aquaculture activities. Greater understanding of how fish metabolize and biosynthesize HUFA may lead to more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimizing the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterization of 2 genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase complementary DNA, SalDes, was isolated that include an open reading frame of 1362 bp specifying a protein of 454 amino acids. The protein sequence includes all the characteristics of microsomal fatty acid desaturases, including 3 histidine boxes, 2 transmembrane regions, and an N-terminal cytochrome b5 domain containing a heme-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast Saccharomyces cerevisiae showed SalDes is predominantly an ω-3 δ5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from α-linolenic acid (18:3n-3). The desaturase showed only low levels of δ6 activity toward C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that included an open reading frame of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo included characteristics of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus this one polypeptide product displays all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3.

Keywords

Atlantic salmon highly unsaturated fatty acids desaturase elongase 

References

  1. Agaba, M., Tocher, D.R., Dickson, C., Dick, J.R., Teale, A.J. 2004A zebrafish cDNA encoding a multifunctional enzyme involved in the elongation of polyunsaturated, monounsaturated and saturated fatty acidsMar Biotechnol6251261Google Scholar
  2. Aki, T., Shimada, Y., Inagaki, K., Higashimoto, H., Kawamoto, S., Shiget, S., Ono, K., Suzuki, O. 1999Molecular cloning and functional characterisation of rat δ6 fatty acid desaturaseBiochem Biopyhs Res Commun255575579CrossRefGoogle Scholar
  3. Barlow, S. 2000Fishmeal and fish oil: sustainable feed ingredients for aquafeedsGlobal Aquacult Advocate48588Google Scholar
  4. Beaudoin, F., Michaelson, L.V., Hey, S.J., Lewis, M.L., Shewry, P.R., Sayanova, O., Napier, J.A. 2000Heterologous expression in yeast of the polyunsaturated fatty acid biosynthetic pathwayProc Natl Acad Sci USA9764216426Google Scholar
  5. Bell, J.G., Tocher, D.R., Farndale, B.M., Cox, D.I., McKinney, R.W., Sargent, J.R. 1997The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformationLipids32515525PubMedGoogle Scholar
  6. Bell, J.G., McEvoy, J, Tocher, D.R., McGhee, F., Campbell, P.J., Sargent, J.R. 2001Replacement of fish oil with rape seed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolismJ Nutr13115351543PubMedGoogle Scholar
  7. Bell, J.G., Henderson, R.J., Tocher, D.R., McGhee, F., Dick, J.R., Porter, A., Smullen, R., Sargent, J.R. 2002Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects tissue fatty acid compositions and hepatic fatty acid metabolismJ Nutr132222230PubMedGoogle Scholar
  8. Bell, M.V., Dick, J.R., Porter, A.E.A. 2001aBiosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss)Lipids3611531159Google Scholar
  9. Buzzi, M., Henderson, R.J., Sargent, J.R. 1996The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oilBiochim Biophys Acta1299235244PubMedGoogle Scholar
  10. Buzzi, M., Henderson, R.J., Sargent, J.R. 1997Biosynthesis of docosahexaenoic acid in trout hepatocytes proceeds via 24-carbon intermediatesComp Biochem Physiol116B263267Google Scholar
  11. Cho, H.P., Nakamura, M.T., Clarke, S.D. 1999aCloning expression and nutritional regulation of the human δ6 desaturaseJ Biol Chem274471477CrossRefGoogle Scholar
  12. Cho, H.P., Nakamura, M.T., Clarke, S.D. 1999bCloning expression and nutritional regulation of the human δ5 desaturaseJ Biol Chem2743733537339CrossRefGoogle Scholar
  13. Cook, H.W. 1996

    Fatty acid desaturation and chain elongation in eukaryote

    Vance, D.E.Vance, J.E. eds. Biochemistry of Lipids, Lipoproteins and MembranesElsevierAmsterdam, netherlands129152
    Google Scholar
  14. Ghioni, C., Tocher, D.R., Bell, M.V., Dick, J.R., Sargent, J.R. 1999Low C18 to C20 fatty acid elongase activity and limited conversion of stearidonic acid, 18:4n-3, eicosapentaenoic acid, 20:5n-3, in a cell line from the rurbot, Scophthalmus maximusBiochim Biophys Acta1437170181CrossRefPubMedGoogle Scholar
  15. Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.J., Dick, J.R., Sargent, J.R., Teale, A.J. 2001A vertebrate fatty acid desaturase with δ5 and δ6 activitiesProc Natl Acad Sci USA981430414309Google Scholar
  16. Huang, Y.-S., Chaudhary, S., Thurmond, J., Bobik, E.G., Yuan, L., Chan, G.E., Kirchner, S.J., Mukerji, P., Knutson, D.S. 1999Cloning of δ12- and δ5-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiaeLipids34649659PubMedGoogle Scholar
  17. Inagaki, K., Aki, T., Fukuda, Y., Kawamoto, S., Shigeta, S., Ono, K., Suzuki, O. 2002Identification and expression of a rat fatty acid elongase involved the biosynthesis of C18 fatty acidsBiosci Biotechnol Biochem66613621CrossRefPubMedGoogle Scholar
  18. Kyte, J., Doolittle, R. 1982A simple method for displaying the hydropathic character of a proteinJ Mol Biol157105132PubMedGoogle Scholar
  19. Leonard, A.E., Kelder, B., Bobik, E.G., Kroeger, P.E., Chuang, L.-T., Thurmond, J.M., Parker-Barnes, J.M., Kopchick, J.J., Huang, Y.-S., Murkerji, P. 2000acDNA cloning and characterisation of human δ5 desaturase involved in the synthesis of arachidonic acidBiochem J347719724CrossRefGoogle Scholar
  20. Leonard, A.E., Bobik, E.G., Dorado, J., Kroeger, P.E., Chuang, L.-T., Thurmond, J.M., Parker-Bames, J.M., Das, T., Huang, Y.-S. Murkerji, Murkerji, P. 2000bCloning of a human cDNA encoding a novel enzyme involved in the elongation of long chain polyunsaturated fatty acidsBiochem J350765770CrossRefGoogle Scholar
  21. Leonard, A.E., Kelder, B., Bobik, E.G., Chuang, L.-T., Lewis, C.J., Kopchick, J.J., Murkerji, P., Huang, Y.-S. 2002Identification and expression of mammalian long-chain PUFA elongation enzymesLipids37733740PubMedGoogle Scholar
  22. Michaelson, L.V., Lazarus, C.M., Griffiths, G., Napier, J.A., Stobart, A.K. 1998aIsolation of a δ5 fatty acid desaturase gene from Mortierrela alpinaJ Biol Chem2731905519059CrossRefGoogle Scholar
  23. Michaelson, L.V., Napier, J.A., Lewis, M., Griffiths, G., Lazarus, C.M., Stobart, A.K. 1998bFunctional identification of a fatty acid δ5 desaturase gene from Caenorhabditis elegansFEBS Lett439215218CrossRefGoogle Scholar
  24. Napier, J.A., Hey, S.J., Lacey, D.J., Shewry, P.R. 1998Identification of a Caenorhabditis elegans δ6 fatty acid desaturase by heterologous expression in Saccharomyces cereviciaeBiochem J330611614PubMedGoogle Scholar
  25. Parker-Barnes, J.M., Das, T., Bobik, E., Leonard, A.E., Thurmond, J.M., Chuang, L., Huang, Y.S., Mukerji, P. 2000Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acidProc Natl Acad Sci USA9782848289Google Scholar
  26. Qui, X., Hong, H, MacKenzie, S.L. 2001Identification of a δ4 fatty acid desaturase from Thraustochytrium sp. involved in the synthesis of docosahexaenoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica junceaJ BiolChem2763156131566Google Scholar
  27. Saitou, N., Nei, M. 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol Biol Evol4406425PubMedGoogle Scholar
  28. Sargent, J.R., Tacon, A. 1999Development of farmed fish: a nutritionally necessary alternative to meatProc Nutr Soc58377383PubMedGoogle Scholar
  29. Sargent, J.R., Henderson, R.J., Tocher, D.R. 1989

    The lipids

    Halver, J.E. eds. Fish Nutrition2Academic PressSan Diego, Calif153218
    Google Scholar
  30. Sargent, J.R., Tocher, D.R., Bell, J.G. 2002

    The lipids

    Halver, J. E.Hardy, R.W. eds. Fish Nutrition3Acadeinic PressSan Diego; Calif181257
    Google Scholar
  31. Sprecher, H., Chen, Q. 1999Polyunsaturated fatty acid biosynthesis: a microsomal-peroxisomal processProstagland Leukotr Essent Fatty Acids60317321CrossRefGoogle Scholar
  32. Sprecher, H., Luthria, D.L., Mohammed, B.S., Baykousheva, S.P. 1995Re-evaluation of the pathways for the biosynthesis of polyunsaturated fatty acidsJ Lipid Res3624712477PubMedGoogle Scholar
  33. Tidwell, J.H., Allan, G.L. 2002Fish as food: aquaculture’s contributionWorld Aquaculture334448Google Scholar
  34. Tocher, D.R., Ghioni, C. 1999Fatty acid metabolism in marine fish: low activity of δ5 desaturation in gilthead sea bream (Sparus aurata) cellsLipids34433440PubMedGoogle Scholar
  35. Tocher, D.R., Sargent, J.R. 1990Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14 C-labelled (n-3) and (n-6) polyunsaturated fatty acids in trout astrocytes in primary cultureJ Neurochem5421182124PubMedGoogle Scholar
  36. Tocher, D.R., Bell, J.G., Dick, J.R., Sargent, J.R. 1997Fatty acyl desaturation in isolated hepatocytes from Atlantic salmon (Salmo salar): stimulation by dietary borage oil containing γ-linolenic acidLipids3212371247PubMedGoogle Scholar
  37. Tocher, D.R., Bell, J.G., Henderson, R.J., McGhee, F., Mitchell, D., Morris, P.C. 2000The effect of dietary linseed and rapeseed oils on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformationFish Physiol Biochem235973CrossRefGoogle Scholar
  38. Tocher, D.R., Bell, J.G., MacGlaughlin, P., McGhee, F., Dick, J.R. 2001Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oilComp Biochem Physiol130257270Google Scholar
  39. Tocher, D.R., Leaver, M.J., Hodgson, P.A. 1998Recent advances in the biochemistry and molecular biology of fatty acyl desaturasesProg Lipid Res3773117CrossRefPubMedGoogle Scholar
  40. Watts, J.L., Browse, J. 1999Isolation and characterisation of a δ5 fatty acid desaturase from Caenorhabditis elegansArch Biochem Biophys362175182CrossRefPubMedGoogle Scholar
  41. Wilson, R.P. 1989

    Amino acids and proteins

    Halver, J.E. eds. Fish Nutrition2Academic PressSan Diego, Calif.
    Google Scholar
  42. Wynn, J.P., Ratledge, C. 2000Evidence that the rate limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongaseMicrobiology14623252331PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Nicola Hastings
    • 1
  • Morris K. Agaba
    • 1
  • Douglas R. Tocher
    • 1
  • Xiaozhong Zheng
    • 1
  • Cathryn A. Dickson
    • 1
  • James R. Dick
    • 1
  • Alan J. Teale
    • 1
  1. 1.Institute of AquacultureUniversity of StirlingScotlandU.K.

Personalised recommendations